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ACM SIGCOMM Computer Communication Review Volume 47 Issue 5, October 2017

26



Dissecting Last-mile Latency Characteristics
Vaibhav Bajpai

TU Munich
Steffie Jacob Eravuchira

SamKnows Limited
Jürgen Schönwälder

Jacobs University Bremen

ABSTRACT
Recent research has shown that last-mile latency is a key network
performance indicator that contributes heavily to DNS lookup and
page load times. Using a month-long dataset collected from 696
residential RIPE Atlas probes and 1245 SamKnows probes, we
measure last-mile latencies from 19 ISPs (RIPE Atlas) in the US
and the EU, and 9 ISPs (SamKnows) in the UK. We show that
DSL deployments not only tend to enable interleaving on the last-
mile, but also employ multiple depth levels that change over time.
We also witness that last-mile latency is considerably stable over
time and not affected by diurnal load patterns. Unlike observations
from prior studies, we show that cable providers in the US do not
generally exhibit lower last-mile latencies when compared to that of
DSL. We instead identify that last-mile latencies vary by subscriber
location and show that last-mile latencies of cable providers in the
US are considerably different across the US east and west coast. We
further show that last-mile latencies vary depending on the access
technology used by the DSL modem wherein VDSL deployments
show last-mile latencies lower than ADSL1/ADSL2+ broadband
speeds. The entire dataset and software used in this study is made
available [2] to the measurement community.

CCS CONCEPTS
• Networks ! Network monitoring;
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1 INTRODUCTION
Srikanth Sundaresan et al. in [33] (2013), using the BISmark [4, 31]
platform, have shown that latency becomes a critical factor impact-
ing quality of experience in networks where downstream throughput
exceeds 16 Mb/s. The effects of this observation are visible today
with continuous efforts that attempt to move popular content as
close [17] to the edge as possible. Yi-Ching Chiu et al. in [11]
(2015) recently showed that popular paths to CDNs serving high
volume client networks tend to be shorter than paths to other net-
works. This is taken even further by some large content providers
that deploy content caches [8, 10] directly in service provider net-
works. Furthermore, new standards such as HTTP/2 [5] (2015) have
been defined with a goal to improve webpage load times. Ongoing
efforts such as QUIC [21] (2017) and TLS 1.3 [29] (2017) take this
further to target operation on a much reduced latency (known as
0-RTT mode) overhead. In efforts to highlight confounding factors
responsible for degraded webpage performance, Srikanth Sundare-
san et al. in [33] (2013) recently showed that last-mile latency is a
major contributor to end-to-end latency and it contributes heavily to
DNS lookup and page load times. Last-mile latency is becoming a
key broadband network performance indicator and factors affecting

Figure 1: Distribution of 696 RIPE Atlas v3 (blue) and 1245
SamKnows (red) residential probes. RIPE Atlas probes span
the EU (521) and the US (161), while SamKnows probes span
the UK (1233) and the US (11).

last-mile latency need further investigation. We measure last-mile
latencies using two datasets as shown in Fig. 1. The datasets have
been obtained using 696 residential RIPE Atlas [4] probes deployed
in 19 ISPs in the US and the EU and 1245 residential SamKnows [4]
probes deployed in 9 ISPs in the UK.

Our findings �a) DSL service providers not only enable inter-
leaving, but also dynamically adapt the depth levels (see § 4.1) with
time, b) Last-mile latency is considerably stable over time (see § 4.2)
and not affected by diurnal load patterns. Last-mile latencies for
DSL center (see § 4.3) at ⇠16 ms, with cable at ⇠8 ms, and fibre
deployments at ⇠4 ms, c) Subscribers of some US cable providers ex-
perience considerably different (see § 4.4) last-mile latencies across
the US east (centered at ⇠24 ms) and west coast (centered at ⇠8
ms) and d) Last-mile latencies decrease with increase (see § 4.5)
in broadband speeds. VDSL shows last-mile latencies lower than
ADSL1/ADSL2+ deployments.

To the best of our knowledge, this is the first study that measures
last-mile latency characteristics on multiple perspectives covering
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several service providers in the US and the EU. This is the first study
to show interleaving depth levels, last-mile latency behaviour by
time of day, last-mile latency by subscriber location and last-mile
latency based on the access technology used by the DSL modem. To
help with reproducibility [3], the entire dataset and software (see § 5
for details) used in this study is made available to the community.

2 RELATED WORK
Marcel Dischinger et al. in [15] (2007) inject packet trains and
use responses received from home gateways to infer broadband link
characteristics. They show that last-mile latencies are mostly affected
by large modem queues and are higher for DSL when compared to
cable networks. Srikanth Sundaresan et al. in [32] (2011) use the
SamKnows platform to show that DSL networks enable interleaving
on the last-mile which increases last-mile latencies for DSL users.
Igor Canadi et al. in [9] (2012) show that end-to-end latencies to
speedtest.net servers experienced by DSL users are higher
in US markets. Our study extends this state of the art to show that
DSL deployments not only enable interleaving, but also implement
multiple interleaving depth levels (see § 4.1) and vary them over
time. Furthermore, our study shows that last-mile latencies for cable
users are not generally lower than that of DSL. We instead identify
that last-mile latencies vary by subscriber location. We show that last-
mile latencies of some cable providers in the US are considerably
different (see § 4.4) across the US east and west coast. Subscribers
of cable providers around the US east coast experience last-mile
latencies similar to that of DSL. Prior research has measured last-
mile latency as the latency to the first public IP hop and consequently
included latencies within the home network. Our study shows that
latencies within the home network have an impact and must not be
included when measuring last-mile links.

Aaron Schulman et al. in [30] (2011) use PlanetLab [12] vantage
points to send ICMP echo request packets to broadband hosts. They
describe how physical factors (snow, wind, rain) affect the reliabil-
ity of last-mile links. Zachary S. Bischof el al. in [6] (2012) run
traceroute measurements from within a BitTorrent plugin to
measure the effect of last-mile latencies on web performance. They
show that while increasing bandwidth provides a trend of dimin-
ishing returns, high last-mile latency dramatically increases page
rendering times. Daniel Genin et al. in [18] (2013) measure effects
of congestion on access networks. They show that DSL links are
mostly congested on the last-mile, while cable links usually expe-
rience congestion beyond the last-mile and show higher variability
of such congestion events. Srikanth Sundaresan et al. in [33] (2013)
show that last-mile latency is a bottleneck in high-throughput net-
works. They propose methods to perform DNS prefetching and TCP
connection caching on the residential gateway to mitigate last-mile
latency bottlenecks.

3 METHODOLOGY
RIPE Atlas has deployed ⇠22K [4] (with ⇠9.8K connected) and Sam-
Knows has deployed ⇠250K [4] (with ⇠100K connected) dedicated
hardware probes all around the globe as of June 2017. We begin
by describing how we identified residential probes and provisioned
month-long traceroute measurements from both platforms.

Table 1: Distribution of SamKnows (above) and RIPE Atlas (be-
low) probes by service providers.

ISP ASN TYPE CC ##

1 BT 2856 DSL UK 314
2 PLUSNET 6871 DSL UK 271
3 VIRGINMEDIA 5089 CABLE UK 201
4 OPALTELECOM 13285 DSL UK 132
5 ORANGE 12576 DSL UK 82
6 TISCALI 9105 DSL UK 73
7 BSKYB 5607 DSL UK 36
8 ZEN 13037 DSL UK 35
9 TALKTALK 43234 DSL UK 34

1 FREE 12322 DSL FR 137
2 COMCAST 7922 CABLE US 122
3 DTAG 3320 DSL DE 61
4 ORANGE 3215 DSL FR 60
5 TELENET 6848 CABLE BE 30
6 XS4ALL 3265 DSL NL 30
7 OVH 35540 DSL FR 29
8 LDCOMNET 15557 DSL FR 29
9 BELGACOM 5432 DSL BE 25
10 UUNET 701 FIBRE US 23
11 BT 2856 DSL UK 23
12 LGI 6830 CABLE EU 23
13 VIRGINMEDIA 5089 CABLE UK 20
14 ZIGGO 9143 CABLE NL 19
15 TWC 20001 CABLE US 16
16 VIEWQWEST 18106 FIBRE SG 14
17 TELEFONICA-DE 6805 DSL DE 13
18 ZEN 13037 DSL UK 12
19 VODAFONE 3209 DSL DE 10

In the first step we clustered probes by their AS. For RIPE Atlas,
we used the ASN revealed by the RIPE probe API [25], while for
SamKnows, we used the RIPE data API [26] to map the public IP
to the origin AS of the probe. We then ranked ASes by the num-
ber of probes and searched the literature for techniques that can
classify ASes by network type. While Xenofontas Dimitropoulos
et al. in [14] (2006) provide an approach to classify ASes using
machine learning techniques, the dataset is outdated. In contrast,
PeeringDB [23] which is a database holding peering information
of participating networks serves as a living, viable alternative to-
day. Therefore, we used PeeringDB to map ASes to their network
type information. This mapping allowed us to select for ASes that
belong to ISP networks. In the next step, we provisioned one-off
traceroute measurements to identify residential probes. We de-
fine residential probes as probes that are directly wired to the home
gateway. In order to achieve this, we searched for probes whose hop1
was in a private IPv4 address space [28], but their hop2 was in a
public IPv4 address space. Going forward, we use the term probes
to refer to residential probes.

We further classified probes by access technology based on ser-
vice offers made on the website of the ISP. We also searched litera-
ture for techniques to validate the classification since neither dataset
has ground-truth on access type used by the home gateway. For
instance, UPnP discovery messages can be used to reveal access
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Figure 2: CDF of hop1 latency to that hop2. ⇠19% of RIPE Atlas
and SamKnows probes show hop1 contributing to > 10% (but
less than 100%) of hop2 latency. Home network latency should
not be accounted when measuring last-mile latency.
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Figure 3: 9.95% of SamKnows probes show hop1 contributing
to more than 100% of hop2 latency. The hop1 latency is stable at
around 50 ms. We suspect, these probes are connected to home
routers that prefer to rate limit ICMP responses to TTL expiry.

technology used on the WAN interface of a home gateway. How-
ever, since RIPE Atlas currently does not support a measurement
that can perform UPnP queries and since this technique has been
proven to be unreliable [13] (2012), we instead rely on reverse DNS
entries derived from the public IP endpoints to validate the access
type classifications with less than 1% mismatch error. We next pro-
visioned month-long traceroute measurements towards RIPE
Atlas anchors and SamKnows Measurement Lab [16] servers. Mea-
surements were performed every 4 hours using evtraceroute
busybox applet on RIPE Atlas and using mtr on SamKnows.

In this process, we discovered [1] (2015) that older versions
of RIPE Atlas probes (⇠43.1% of all probes) experience load is-
sues due to their hardware limitations. Recently, it has been further
confirmed [20] (2015) that these delays are more pronounced in
situations where older version of probes are loaded with concurrent
measurements. We therefore base our measurements on the most re-
cent hardware version (v3) only. The traceroute measurements
were conducted every 4 hours over 35 days in (July-August) 2014.
Note, since probes in either platform cannot associate to a wireless
access point, these measurements do not get skewed by presence of
wireless links in the home network.

This dataset consists of 135K last-mile latency data points cap-
tured from 696 residential v3 RIPE Atlas probes and 440K last-
mile latency data points captured from 1245 residential SamKnows
probes. Fig. 1 shows the geographical distribution of these probes.
RIPE Atlas probes cover 19 different ISPs in the the EU (521 probes)
and the US (161 probes), while SamKnows probes cover 9 ISPs in
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Figure 4: CDF of last-mile latency to end-to-end latency. More
than half of RIPE Atlas and SamKnows probes experience last-
mile latency contributing to > 10% of end-to-end latency.

the UK (1233 probes) and the US (11 probes). Table 1 further shows
the number of probes broken down by ISP. We only consider ISPs
in the analysis that have at least 10 probes.

4 DATA ANALYSIS
We begin by investigating the latency contributed by the home net-
work (hop1) to that of the first hop in the service provider’s network
(hop2). A major portion of RIPE Atlas (⇠92%) and SamKnows
(⇠80%) probes show expected hop1 latencies of less than 1.5 ms,
while a discernible number of probes show more than expected hop1
latency. For instance, Fig. 2 shows the relative contribution of hop1
latency to that of hop2. We witness that 9.95% of SamKnows probes
(and 0.4% of RIPE Atlas probes) show hop1 contributing to more
than 100% of hop2. 69% of these probes are connected to PLUS-
NET home routers. Fig. 3 shows that hop1 latencies for these probes
appear to be ⇠50 ms. We suspect that these probes are behind home
routers that prefer to rate limit ICMP responses to TTL expiry and
therefore have higher traceroute response times. We do not con-
sider these probes as part of our dataset. Pruning these probes out,
we witness that ⇠19% of both SamKnows and RIPE Atlas probes
show hop1 latency contributing to 10% or more (but less than 100%)
of hop2 latency. As such, latencies within the home network can
have a discernible impact and must not be included when measur-
ing last-mile latency. In order to circumvent effects of latencies
induced within a home network, we calculate last-mile latency as the
difference between the hop2 and hop1 latency. Last-mile latencies
described beyond this point reflect this definition. Fig. 4 shows the
contribution of last-mile to end-to-end latency. It can be seen that
more than half of RIPE Atlas and SamKnows probes experience
last-mile latencies that contribute to more than 10% of end-to-end la-
tency with ⇠80% probes experiencing last-mile latency contributing
to more than 5% of end-to-end latency. Thererfore, last-mile latency
is a key broadband network performance indicator today and factors
affecting last-mile latency need further investigation.

4.1 Interleaving depths in DSL networks
It is suspected that DSL networks enable interleaving on the last-
mile to trade latency with lower packet loss rates [7]. An interleaving
channel intersperses the payload between DSL frames to provide
Impulse Noise Protection (INP) on the last-mile. This is usually
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Figure 5: CDF (top) of hop1 and hop2 latencies from four probes connected to DSL networks. A step-wise change in hop2 latency
exhibits an interleaving depth level change which matches with the timeseries (bottom).

implemented along with the Reed Solomon (RS) Forward Error Cor-
rection (FEC) technique to make the channel more resilient to packet
loss. The number of RS codewords accumulated before transmitting
the frame determines the depth of the interleaving channel. DSL
deployments employ the Dynamic Line Management (DLM) tech-
nique to remotely monitor line characteristics such as the amount of
packet loss encountered on the last-mile. They use this information
to dynamically adapt interleaving depth levels. An increase in depth
level increases latency. An increase in latency can directly impact
applications leveraging congestion aware transport protocols such
as TCP. An interleaving depth level of 1 is known as fastpath which
is more suitable for real-time communication applications but only
appropriate for links with low error rates. DSL operators tend to
support both fastpath and higher depths, although not all operators
allow fastpath on the last-mile. It is also unlikely that a deployment
will only support fastpath.

In our pursuit to identify interleaving depths, we investigated
latencies observed by both SamKnows and RIPE Atlas probes con-
nected to DSL networks. A change in the interleaving depth level
changes the hop2 latency by ⇠5 ms [7]. A step-wise transition on the
CDF derived from hop2 latencies indicates a switch between such
depth levels. Fig. 5 shows example probes that witnessed depth-level
changes. These probes portray hop2 latencies distributed as step-
wise functions. It can be seen that multiple depth level transitions
occurred over the span of a month. The corresponding timeseries
tends to match with the depth changes showing that DSL networks
tend to vary interleaving depths over time. SamKnows probes per-
form measurements only in the absence of cross-traffic, as a result
the second-hop transitions cannot be attributed to bufferbloat [19]
on the home gateway. Each data point in the timeseries is an average
of three queries, as a result, some spikes are also visible. We further
refer the reader to [1] where we discuss the effects of averaging
latencies over a single hop. In order to automate the discovery of
probes experiencing such a behavior, we extracted relative maximas
from the Kernel Density Estimation (KDE) derived from hop2 la-
tencies witnessed by each probe. We used a sample threshold on
the frequency of occurrence for each local maxima to ensure hop2
latencies remained stable for an extended period. We tagged probes
with a depth-level transition in situations where the local maximas
were at least 5 ms apart from each other. Fig. 6 shows the distribution
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Figure 6: DSL probes that witnessed 2-levels (above) and 3-
levels (below) of interleaving depth changes.

of both SamKnows and RIPE Atlas probes that experienced 2�levels
and 3�levels of interleaving depth level changes. The observations
were validated with one (BT) service provider. This analysis extends
our understanding that DSL deployments not only enable interleav-
ing, but also implement multiple interleaving depth levels and vary
them over time.

4.2 Last-mile latencies by time of day
We investigated the distribution of last-mile latencies over 24 hour
cycles for DSL, cable and fibre deployments. Fig. 7 shows boxplots
of last-mile latencies observed over each hour in UTC. Note, our
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Figure 7: Last-mile latencies by time (UTC) of day. Last-mile
latencies remain considerably stable by time of day.

measurements were taken every 4 hours over a 35 days period. The
measurements were also provisioned using UTC. Since SamKnows
tends to distribute probes within the frequency interval, measure-
ments were spread over each hour of the day. RIPE Atlas only
recently (since Nov 2015) introduced this feature [22] of controlling
the spread. Given our dataset spans Aug 2014, RIPE Atlas mea-
surements strictly occur on the 4 hour boundary. Since, SamKnows
(unlike RIPE Atlas) probes do not perform measurements in pres-
ence of cross-traffic [1], the number of SamKnows probes running
measurements change every hour unlike that of RIPE Atlas where
all probes participate in the measurement. It can be seen that the
last-mile latency is stable over time and is not affected by diurnal
load patterns. Note that our measurement method has been designed
to eliminate queuing delays such as delays caused by home gate-
ways with bloated buffers [19] in front of an overloaded access line.
As a such, this observation is in line with expectation. A DSL line
is not shared with other customers (except indirectly via crosstalk
impacting signal quality) and hence load should not affect DSL line
behaviour in significant ways. For cable access networks, the situa-
tion is slightly different but it seems that deployments have enough
capacity to sustain load such that the time-slotted approach makes
them behave in a reasonably robust way.

4.3 Last-mile latencies by service provider
Fig. 7 shows that last-mile latencies for DSL center at ⇠16 ms,
with cable at ⇠8 ms, and fibre deployments at ⇠4 ms. We further
break down the last-mile latencies by service provider networks as
shown in Fig. 8. We witness that last-mile latencies exhibited by
DSL providers in the EU are higher (due to interleaving) when com-
pared to cable providers with fibre deployments exhibiting relatively
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Figure 8: Last-mile latencies for DSL, Cable and Fibre ISPs.
Last-mile latencies are ordered as DSL > Cable > Fibre for mul-
tiple ISPs in the EU.

lower last-mile latencies than that of DSL and cable deployments.
The distribution shows higher variation in DSL networks due to
multiple levels of interleaving depths enabled depending on the line
characteristics and geographical location of the subscriber. The last-
mile latencies for cable providers in the US (Comcast and TWC for
instance) also appear to exhibit a multi-modal distribution. One of
the clusters exhibit last-mile latencies similar to EU cable providers
(centered at ⇠8 ms), while the other cluster exhibits last-mile laten-
cies similar to EU DSL providers (centered at ⇠24 ms) which is
discussed in the next section. Further, note that the sample of probes
after splitting observations by ISP also goes down significantly. As
such, it becomes difficult to reasonably discuss latency distributions
for every ISP in greater detail. We captured some of these lessons
in [1], where we show that the AS-based distribution of RIPE Atlas
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probes is heavily-tailed. As such, studies that require higher cover-
age of network origins tend to benefit more from RIPE Atlas than
those that require high probe density within each network.

4.4 Last-mile latencies by subscriber location
We further investigated last-mile latencies by clustering probes of a
service provider by their subscriber location. Given the RIPE Atlas
dataset consists of probes located in both EU and US regions, the
probes are located in different timezones. We use timezones since
they provide a good granular separation by location (since coun-
tries are too coarse grained, while cities are too fine grained for the
number of probes within each service provider). Fig. 9 shows the
distribution of last-mile latencies grouped by location for selected
ISPs where we have a higher sample (more than 100) of probes. This
separation reveals the reason for the multimodal distribution (see
Fig. 8) of last-mile latencies exhibited by ISPs. Fig. 10 shows that
Comcast with last-mile latencies centered at ⇠8 ms are exhibited by
probes in the LA region, while last-mile latencies centered at ⇠24
ms are exhibited by probes in the NYC region. Similar results are
observed for TWC and LGI-UPC service providers. As such, unlike
prior observations [15, 32], this analysis reveals that not all cable
deployments show last-mile latencies lower than DSL. We instead
identify that last-mile latencies vary by subscriber location. Last-
mile latencies of cable providers within the EU are generally lower
than that of DSL, but last-mile latencies of some cable providers in
the US are considerably different across the US east and west coast.
Subscribers of those cable providers around the US east coast experi-
ence last-mile latencies similar to that of DSL. However, the causes
of this observed effect remain unclear. Further analysis is limited by
the capabilities of the collected dataset and requires collaboration
with service providers.

4.5 Last-mile latencies by broadband speeds
DSL technology has also evolved over the years. For instance,
ADSL2 provides multichannel transmission capability that allows
different latency characteristics to be applied to each channel over
the last-mile. ADSL2+ uses higher frequencies to double bandwidth
capacities. We further investigated the characteristics of last-mile la-
tency based on the access technology used by the DSL modem.
Fig. 11 shows last-mile latencies observed by DSL SamKnows
probes separated by 4 broadband speed tiers. It can be seen that the
last-mile latencies observed by probes behind ADSL1 and ADSL2+
speeds are similar. Although a cluster of probes behind ADSL2+
lines also center at ⇠8 ms and show last-mile latencies lower than
ADSL1. On the other hand last-mile latencies for VDSL speeds tend
to show considerably lower last-mile latencies when compared to
ADSL1 and ADSL2+ speeds. Fig. 12 shows a decrease of last-mile
latency with increase in broadband speeds. In DSL deployments,
higher bandwidth capacities are made possible by using higher range
frequencies on the physical link. These frequencies tend to dissipate
over shorter distances. Therefore, ADSL2+ and VDSL deployments
tend be closer to the traffic aggregation points. Although, a reduction
in copper length does not have significant effects on last-mile latency.
Furthermore, with an increase in line speeds, ADSL2+ and VDSL
deployments allow frames to be transmitted faster. Higher transmis-
sion rates help reduce interleaving delays, which can significantly
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Figure 9: Last-mile latencies separated by location. Users wit-
ness different last-mile latencies depending on their location of
subscription.
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Figure 10: Last-mile latencies separated by timezone. Comcast
and TWC users experience considerably different last-mile la-
tencies across the US east and west coast.

reduce latencies experienced on the last-mile. This analysis reveals
that last-mile latency is not the same for all subscribers of a DSL
ISP, but it differs by access technology used by the DSL modem.

5 CONCLUSION
We leveraged the RIPE Atlas and SamKnows platform to measure
last-mile latency. This is the first study that has measured last-mile
latencies on such a scale from within multiple service providers net-
works in the US and the EU. We showed that DSL service providers
not only enable interleaving, but some providers dynamically adapt
interleaving depth levels. We witnessed that last-mile latency is con-
siderably stable over time and not affected by diurnal load patterns.
Last-mile latencies for DSL center at ⇠16 ms, with cable at ⇠8 ms,
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Figure 11: Box plots of last-mile latencies for DSL ISPs
separated by broadband speeds. The last-mile latencies for
ADSL/ADSL2+ > VDSL deployments.

and fibre deployments at ⇠4 ms. This observation will allow sim-
ulation studies to appropriately model DSL, cable and fibre links.
We showed that last-mile latencies of a service provider can depend
on the geographic location of a subscriber. We observed significant
last-mile latency differences for US cable service providers across
the east (centered at ⇠24 ms) and west (centered at ⇠8 ms) coast.
Last-mile latencies of DSL deployments vary with broadband speeds.
Last-mile latencies for VDSL are lower compared to that of ADSL1
and ADSL2+ broadband speeds.

This study extends our understanding of last-mile latency wit-
nessed by home users. CDN providers that attempt to optimise
content delivery towards the edge of the network will benefit from
the identified characteristics of the last-mile. This work will also
benefit ISPs since it promotes the possibility of caching popular
content near to the home routers to further eliminate the bottlenecks
induced by last-mile latency. This work serves as possible input
for ongoing standardization efforts [21, 29] within the IETF that
attempt to target operations in low latency modes. The methodology
applied in this study is generally useful for broadband measurement
studies [24, 27] using SamKnows and RIPE Atlas.

Reproducibility Considerations
The RIPE Atlas and SamKnows datasets are stored in a SQLite
database (alongwith the SQL schemas) and released [2]. The soft-
ware used in this study is also released [2]. This includes Jupyter

1 2 4 8 16 32 64
0.0
0.2
0.4
0.6
0.8
1.0

CD
) 

(3
06

)

B7 (6DP.nRws)

80 0ESs (100)
40 0ESs (37)

20 0ESs (88)
8 0ESs (81)

1 2 4 8 16 32 64
0.0
0.2
0.4
0.6
0.8
1.0

CD
) 

(2
69

)

3L861(7 (6DP.nRws)

80 0ESs (109)
40 0ESs (26)

20 0ESs (108)
8 0ESs (26)

1 2 4 8 16 32 64
LDst-PLOe LDtenFy (Ps)

0.0
0.2
0.4
0.6
0.8
1.0

CD
) 

(7
4)

2RA1G( (6DP.nRws)

40 0ESs (22)
20 0ESs (36)

8 0ESs (16)

Figure 12: Last-mile latency decreases with increase in broad-
band speeds. Higher ADSL2+ and VDSL transmission rates
help reduce last-mile latencies.

notebooks to provision measurements on RIPE Atlas, fetch mea-
surements results, augment them using third-party datasets (such
as PeeringDB [23] and RIPE stat APIs [26]) and compile datasets
together into a SQLite database. The software used in the analysis
to generate plots is also included. Guidance on how to repeat and
reproduce these results is provided and reproducers are encouraged
to contact the authors for further questions.
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