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A B S T R A C T

Mobile users demand more and more data traffic, yet network resources are limited. This creates a challenge
for network resource management. One way of addressing this challenge is by understanding the data usage
patterns of mobile users so that resources can be optimally allocated based on user traffic demand and data
usage behavior. However, understanding and characterizing the data usage patterns of mobile users is a
complex task. In this work, we investigate and characterize users’ data usage patterns and behavior in mobile
networks. We leverage a dataset (∼113 million records) collected through a crowd-based mobile network
measurement platform – Netradar – across five countries. Data usage behavior of users over a cellular network
is primarily driven by user mobility, the type of subscription plan marketed by Mobile Network Operators
(MNOs), network congestion, and network coverage. We apply an unsupervised machine learning approach
to cluster mobile user types by considering different factors such as data consumption, network access type,
the number of sessions created per user, throughput, and mobility. By defining data usage pattern of mobile
users, we develop a user clustering model and identify three different mobile user groups (clusters). Our
clustering model shows that the data usage patterns are unevenly distributed across the five countries studied,
characterized by a small number of heavy users consuming the highest volume of data. We show how the types
of applications installed by users correlate with data consumption patterns in some countries. Heavy users tend
to install more traffic-demanding apps than users from the other two groups — regular and light users. Finally,
we trained a classification model using the labeled dataset produced by our aforementioned user clustering
method. The model helps classifying mobile users according to their usage patterns (i.e., heavy, regular, and
light) with an accuracy of ∼80% in the test dataset.
1. Introduction

The demand for mobile data traffic is increasing. As mobile technol-
ogy and network coverage improve over time, the use of data-intensive
applications such as video streaming from mobile devices is growing
rapidly. Studies show that a significant share of traffic generated from
mobile devices increasingly consists of multimedia content [2–5]. As
reported by Ericsson [6] in 2018, video application content alone
covered 60% of the mobile data traffic and it is projected to cover 74%
of the traffic by 2024. Moreover, according to Cisco’s global mobile
data traffic report [7], there is an increasing demand for mobile data
traffic where more than 75% of mobile data traffic will be multimedia
contents by 2020.
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Mobile networks are becoming more heterogeneous to keep up
with the ever-increasing demand for mobile traffic [8]. As the traffic
demand, the complexity of the network, and the number of users
increase, managing the network resources and understanding the data
usage patterns of mobile users becomes complex. As a result, service
and content providers need to efficiently manage available resources
based on the data usage behavior of their customers. Identifying the
data usage patterns of mobile users can be useful in various scenarios,
such as managing the increasing demand for mobile data usage [9],
understanding urban dynamics [10] for improved urban planning [11],
developing of data plan products,1 as well as enhancing communication
and service quality. It has also been shown that data usage and transfer
patterns of different applications have a significant impact on the
vailable online 1 January 2021
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energy consumption of mobile devices [3]. Therefore, understanding
the data usage patterns of mobile users at various locations and market
places is becoming increasingly important.

A number of research articles focus on mobile data usage patterns
and behavior. The focus of previous work includes user location and
mobility patterns [12,13], temporal dynamics of mobile users [14],
and quality of experience [15–17]. However, most of the previous
studies are limited to a single operator [18]; target a specific city
and location [19]; study usage behavior targeting application types
accessed by users [20–23]; or are based on limited measurement data
and user spaces [24].

In this paper, we characterize data usage patterns and behaviors
of mobile users across five different countries. We study whether clus-
ters emerge from users’ data usage patterns and user behavior. We
also investigate whether it is possible to build a model that predicts
(classifies) such type of data usage patterns using machine learning
methods. This paper provides new insight into mobile users’ data usage
patterns and solid confirmation on the previous outcomes using real-
world measurement datasets across countries. The contributions of
his paper are summarized as follows:

First, we leverage a measurement dataset (∼113M records) collected
sing the Netradar [25] mobile measurement platform from five coun-
ries. The dataset covers a wide range of geographical areas, Mobile
etwork Operators (MNOs), and mobile users. We investigate data
sage patterns of mobile users by considering both data traffic flows
nd the type of installed applications.

Second, we define the data usage pattern of mobile users based
n user mobility, location, device model, network performance (e.g.,
hroughput and latency), and network technology coverage. Using this
efinition, we present a mobile user clustering model by applying an
nsupervised machine learning algorithm. Using the clustering model,
e identify and study the commonality among groups of mobile users,

ncluding the trend of data consumption and interaction with their
evice. We observe that small share of heavy cellular network users
from 2% to 4%) have the highest data consumption. We also show
hat the type of apps installed by mobile users has a relationship with
he users’ data consumption patterns. For instance, heavy users often
nstall more apps that generate high data traffic, such as photography,
ocial media, and video players.

Third, we develop a prediction model that helps classify mobile
sers’ data usage patterns and behavior. If the users’ data usage pat-
ern and behavior are predictable, MNOs can apply different pricing
nd traffic resource optimizing methods [26] based on their customer
esource demand and data usage patterns. In-line with this, using the
abeled dataset produced from the user clustering method as input
eatures, we develop a classification model that helps classify users’
ata usage patterns (with 80% accuracy on the test dataset). As part of
ur contribution, we will make the dataset available to the community,
pon publication.

The paper is structured as follows. Section 2 presents the measure-
ent platform and the dataset that we have used for the analysis.

ection 3 presents the unsupervised model of clustering mobile users
ased on their data usage behavior. Section 4 presents a supervised
ased user classification model. Finally, Section 5 covers related work,
nd Section 7 concludes the paper.

. Methodology

In this section, we introduce the Netradar mobile measurement
latform, which has been used to collect the dataset. We also describe
2

he metrics that we have used from the dataset. K
.1. Measurement platform

Netradar [25] is a crowdsourced mobile measurement platform. The
latform estimates link capacity of cellular networks on smartphones,
sing probe-based measurement methodologies. The method is a hybrid
f Probe Gap Model (PGM) and Probe Rate Model (PRM) [27]. PGM
nd PRM utilize packet pair [28] probes to estimate the available
andwidth. In this paper, we describe the parts of the measurement
latform relevant to our study. The detailed description of the Netradar
easurement platform and its validation are available [29].

The Netradar platform passively listens to the ingress and egress
raffic of a device without imposing any synthetic traffic. The mea-
urement application at the client device runs in the background until
t triggers the measurement when a user starts sending or receiving
ata. If it observes incoming or outgoing traffic on the device, then
he application starts sampling the traffic rate of the ingress and egress
raffic (e.g., on Android using Android traffic Stat API [30]). Currently,
he measurement platform runs on Android mobile devices.

The session starts if there is enough traffic (at least five IP packets)
n either the uplink or downlink direction. The session ends if the link
tays idle for two seconds. Session duration is defined as the interval
etween the starting time of the sampling phase until the traffic stops.
he duration of the session can be in the range from less than a second
o several minutes. The platform does not record sessions of only a few
ackets (<5 IP packets).

The platform also records unconstrained and constrained speeds
f the network. Unconstrained speed is the maximum speed recorded
uring the session when users were not limited by the network. It
s the data rate that the user needs from the network to use mobile
pps on his/her device suitably. In contrast, the constrained speed is
ecorded when the network is a limiting factor. It reflects the maximum
ata rate offered by the network to the user. It is inferred based on
he queuing delay of packets, the available bandwidth and the latency
nformation [29].

The constrained speed can be null if there is no latency informa-
ion or the user never hit the network speed (i.e., constrained did not
appened at all; e.g., when the server did not send data fast enough
hat could possibly congest the network). A given session can have
nly uplink or downlink data recorded. For instance, if the user is
atching video from YouTube, most of the sessions are downlink data.
or such cases, there is no need to send much data on the uplink, or
here are very few traffic which is not statistically sufficient to keep
ecords related to the uplink information. On the other hand, if a user
s uploading a picture to Facebook for instance, then most traffic flows
re in the uplink direction.

Every session has a unique identifier with its own start and end
ime and metadata about the session. For each measurement session
he system records the following meta information: device information,
nformation about the subscriber’s MNO, location and user velocity.
he metadata also contains information about network type (WiFi or
ellular) and accessed radio technologies (2G, 3G, 4G) with detailed ra-
io quality of service (QoS) values. The constrained and unconstrained
peeds for both downlink and uplink are also recorded. Besides, ev-
ry session contains the average download and upload speed, total
pload and download bytes, latency, signal strength, session length,
nd information about the base station (e.g., cell ID, area code, radio
requency channel number). Every session has associated tile informa-
ion (e.g., country, city, population density), where each tile is the area
overage of 100 m by 100 m times.

.2. Dataset

The dataset we use for the analysis is collected using the Netradar
obile network measurement platform. We use data from the mobile
sers devices in five different countries (Finland, Germany, the United

ingdom, Japan, and Brazil). Mobile users in the respective countries



Computer Networks 187 (2021) 107737E.A. Walelgne et al.

u
w
d
c
a
a
(
a
u
d
t
a
I
U
n
f
p

3

c
S
s
d

𝑖

t
L

a
g
c
s
d
a
a
c

o
u
d
u
t
u
w
F
𝑉

Table 1
Number of users and sessions created in cellular networks by country.

Country # of sessions (M) # Users

Finland (FI) 35.1 22 795
United Kingdom (UK) 34 20 529
Japan (JP) 19.8 8081
Brazil (BR) 17.8 7164
Germany (DE) 6.3 6548

are identified based on the network and subscribers Mobile Country
Code (MCC) value. In other words, a user in a given country has to
be a subscriber to one of the Mobile Network Operators (MNO) in that
country and accessing the network within the same country. For the
sake of simplicity, roaming users are not included. For our analysis,
we use a month-long (July 2018) dataset. The number of measurement
sessions created per country over cellular networks are in the order of
millions. Table 1 summarizes the number of users and sessions created
per country in cellular networks. We performed a detailed analysis of
different network factors and data usage patterns of mobile users across
six countries [31]. We showed that the data usage behavior of mobile
users depends on different factors such as user mobility, presence of
network congestion, the accessed radio technology type, and network
coverage. In this paper, we use our previous analysis as a base for
feature selection to develop a clustering model of mobile users’ data
usage patterns.

3. Clustering mobile users

In this section, we apply the unsupervised K-means clustering
method [32] to group mobile users based on their traffic consumption
and activity level. First, we present data processing followed by similar-
ity computation to create user clustering. Then we present the analysis
on the types of users and the app categories they use per cluster.

Say for a set of 𝑚 users and a maximum limit of a given time 𝑇 ,
sage pattern 𝑈𝑃 is defined by the tuple 𝑈𝑃 = (𝐶, 𝐹 ,𝑅, 𝑃 ,𝐷, 𝑉 ,𝑁,𝐵),
here 𝐶 is the number of times user runs under congestion (constrained
ownload speeds); 𝐹 is the number of times the user runs without
ongestion (unconstrained download speeds); 𝑅 is the percentage of
ccessing 4G or 3G network2; 𝑃 is the average population size of the
rea where the user was accessing the network; 𝑉 is the throughput
average constrained and unconstrained download speed); 𝐷 is the
verage session duration; 𝑁 is the number of sessions created by the
ser; 𝐵 is the total data volume transferred (uplink, and downlink
irection) per time interval 𝑡. For our case, the time interval 𝑡 is set
o one hour. The usage pattern for a given user ID 𝑖 can be defined
s: 𝑢𝑝𝑖 = 𝑢𝑝𝑖𝑘|1 ≤ 𝑘 ≤ 𝑇 . Therefore, the usage pattern for a given user
D 𝑖 at time 𝑘 can be defined as: 𝑢𝑝𝑖𝑘 = (𝑐𝑖𝑘, 𝑓

𝑖
𝑘, 𝑟

𝑖
𝑘, 𝑝

𝑖
𝑘, 𝑑

𝑖
𝑘, 𝑣

𝑖
𝑘, 𝑛

𝑖
𝑘, 𝑏

𝑖
𝑘).

ser ID 𝐼 is a combination of installation id, device model, device brand
ame, subscriber MNO, and network country . The aforementioned eight
eatures are identified and selected based on the observation from our
revious [31] and other related work [19,33].

.1. Data processing

For cluster analysis, we consider a one-month (July 2018) dataset
ollected from five countries over cellular networks. Note that, since
eptember 2018, Android started halting background processes that
tay for longer sessions. Therefore, we picked July 2018 as it has more
atasets and the measurements were not interrupted by the OS.

The dataset is filtered and prepared as follows: First, for every user
, the measurement data is grouped by user ID. The time slot we choose

2 Note that 4G refers to all releases of Long Term Evolution (LTE) radio
echnology. The 3G refers to all other releases of radio technologies prior to
TE.
3

is a one-hour interval. So, 𝑢𝑡𝑖 contains a set of all sessions that lay within
the time interval of 𝑡 for a given user 𝑖. Here, the time 𝑡 we considered
is every hour across all days per user during the one-month. For every
user, we calculate the hourly total traffic flows (downlink + uplink),
verage session duration, number of sessions, the number of times users
et access to 4G and 3G network, the number of times users run into
ongestion and without congestion, the average download and upload
peeds that the user gets when it run into congestion (constrained
ownload speed). From our observations, the parameters mentioned
bove have small variation across different days in the same hour, as
lso observed in [19]. Hence a one-hour time slot for the whole month
ould represent the traffic of a given user with better time granularity.

For clustering, we consider only users that have at least seven days
f active measurement sessions during the month. As a result, for every
ser, we get enough measurements and user activities for at least seven
ifferent days. This is important to capture the data usage behavior of
sers. Note that, since a user might not have measurements in all of the
ime intervals, we assume that missed values are created either because
sers were not using their devices to access the Internet or there
as no active traffic flowing in both ingresses and egress directions.
inally, the eight features are reshaped and transformed into row-vector
(𝑓, ℎ), where 𝑓 represents the features and ℎ = {1,… , 24}. Every row

representing a user have information on the aforementioned features at
every one-hour interval.

3.2. Similarity computation and clustering

User grouping and clustering are performed based on the filtered
and prepared datasets using Python’s scikit-learn library [34]. We use
the K-means clustering [35] method, which uses the Euclidean distance
to measure the similarity between the mobile users. For a set of 𝑚
mobile users 𝑈 = {𝑢1, 𝑢2, 𝑢3,… , 𝑢𝑚}, as defined above, we apply the
Euclidean distance [36] to compute the similarity between metrics for
every user. As k-means clustering depends on the distance matrix to
group data points, the algorithm works well when all features are in
a common range. This is important so that features with large scale
value do no dominate small scale features [37]. To ensure this, before
computing the distances, the dataset is normalized so that the mean
and the standard deviation is 0 and 1, respectively.

Since the measurement has multiple features, we applied dimen-
sionality reduction using Principal Component Analysis (PCA), before
performing K-means clustering. Applying PCA helps to reduce the
dimensionality of the feature space without losing too much infor-
mation. As shown in [38], applying PCA before clustering potentially
improves the clustering quality. Especially for the K-means-based clus-
tering method, the PCA can potentially improve the accuracy of the
cluster. We also observe that the quality of the cluster improves when
we apply PCA than without PCA. We choose to use the PCA component
size that explains 99% of the variance.

Let 𝐶 = 𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑘 be a set of clusters where every 𝑐𝑖 is a group
of users with ‘similar’ traffic patterns and demand, and 𝑘 is the number
of clusters. In unsupervised learning, the number of clusters (i.e., the
number of centroids) has to be specified before doing the clustering.
To decide on the optimum number of clusters, we use within cluster
sum of squares (WCSS) — elbow method and the dendrogram structure
of hierarchical clustering. Note that, we have also tested hierarchical
clustering and found that K-means is faster and produces more valid
clusters. The validity of the clusters (as we will discuss in the next
paragraph) is measured in terms of groups of users that have similar
data usage patterns. Accordingly, we found that K-means has better
cluster results on the dataset than the hierarchical clustering method.

To measure the quality of the separation of the clusters, we ap-
plied three different stopping criteria. The criteria are silhouette score
(SH) [39], Calinski–Harabasz index (CH) [40], Davies–Bouldin score
(DB) [41] and Dunn index (DI) [42]. These scores are among the

list of recommended metrics for choosing the number of clusters as
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Table 2
The cluster size (K) with different cluster separation quality measure values.

K CH SH DB DI

2 1203.99 0.26 2.5 0.015833
3 968.91 0.12 2.58 0.013325
4 822.73 0.12 2.35 0.007417
5 755.61 0.1 2.25 0.013325
6 687.46 0.09 2.2 0.013325

surveyed in [43,44]. The silhouette score is a measure of how close
each data point is in a single cluster (cohesion) compared with the other
clusters (separation). The silhouette coefficients measure is in the range
between −1 and 1, where the optimal clustering is with the highest SH
score. SH of negative value suggests a data point is wrongly assigned
to the cluster. The Calinski–Harabasz index is another measure that is
used to quantify how well the clusters at different groups are separated
and how data points in a single cluster are closer to each other. The
CH score is higher when clusters are dense and well separated. The DB
index measures the dispersion of data points within a cluster (intra-
cluster distance) in terms of the dissimilarity measure between two
different clusters (the inter-cluster distance). The DB index values closer
to zero indicate a better partition. The optimal number of clustering
could be found by minimizing the DB index values. The Dunn index
(DI) [42] is a metric is an internal cluster evaluation scheme, where the
metrics is calculated based on the clustered data itself. Higher values
of the DI score indicate better clustering. Table 2 shows the score of
these values at different cluster sizes.

To decide the cluster size, we use the combination of domain knowl-
edge (e.g., from a previous study [19], WCSS — elbow method, the
dendrogram structure (plot not shown), and optimizing the aforemen-
tioned scores (CH, SH, DB, and DI). As a result, we choose the cluster
size of 𝐾 = 3 and have run the K-means clustering algorithm. The op-
timum number is chosen after testing each country dataset separately.
We found that the cluster size of three is a more reasonable number
of user groups based on the metrics mentioned above. The K-means
clustering algorithm runs 1000 times independently with centroids
selection based on K-means++ [45]. Running the algorithm several
times with different initialization of the centroid is essential so that
it does not converge to the local minimum. K-means++ based centroid
selection randomly picks the centroid (of K size) for the first iteration.
Then it assigns each data point to the nearest centroid based on the
calculated distance. K-means++ based centroid selection chooses the
centroid that minimizes the Sum of Square (SS) distance between every
data point to the class centroid. The maximum number of iteration for
every single run is set to 600 with the tolerance value of 0.0001.

3.3. Cluster analysis

We run the clustering algorithm over the dataset for each country
separately and identify group of cellular users belonging together based
on their data usage patterns. Accordingly, we found three distinct group
of users and named them as ‘Heavy’, ‘Regular’, and ‘Light’ users. ‘Heavy’
users can be characterized as users that consume the highest volume
of data (both in download and upload). They are also who frequently
interact with their devices (based on the number of sessions created by
users). ‘Light’ users are users with a small amount of download/upload
bytes and session number. ‘Regular’ users are found in between the
two user groups. Identifying a heavy user from light users can be, for
instance, used as an input for optimal resources management based on
demands.

Table 3 summarizes the number of users in each cluster along with
total data consumption and sessions created per every country. It shows
that both the number of users and the data consumption grouped
together in one country varies compared with the similar group (cluster
labels) in another country. For instance, considering the level of data
4

Table 3
The median data consumption and number of sessions per user group across countries.
The three numbers inside the bracket next to each country name show the number of
users (%) under Heavy, Regular, and Light clusters, respectively. The numbers under
the total Bytes column separated by the pipe represent the download and upload size,
respectively.

Country (%) Total bytes (MB) # Sessions

Heavy (H) Regular (R) Light (L) H R L

FI (3.5, 41.9, 54.6) 309.9 | 18.8 59.9 | 4.4 8.5 | 0.9 389 85 20
DE (2.2, 23, 74.8) 58.2 | 5.1 9.9 | 1.2 2.4 | 0.3 169 32 10
UK (3.1, 27.2, 69.7) 65.2 | 5.8 12.1 | 1.4 2.9 | 0.4 146 32 11
JP (3.1, 32.9, 64) 98.4 | 7.7 14.7 | 1.6 3.4 | 0.4 211 38 11
BR (4.6, 35.8, 59.6) 186.7 | 13.8 29.8 | 2.8 4.8 | 0.7 277 71 21

consumption and session creation heavy users in Finland and Brazil
consume two times more than heavy users in Germany and the UK. For
brevity, we discuss the cluster of two countries (Finland and Brazil) in
detail and opt out the detail discussion of other countries.

Fig. 1 depicts the median total download and upload values (left col-
umn); the unconstrained and constrained data rates (middle column);
the number of sessions and session duration (the right column) per
cluster for users in Finland. From the figure, we can observe that cluster
1 consists of a group of users that mostly consume the highest amount
of download (309.9 MB) and upload (18.8 MB) values in all times
of the day. We refer this group of users as heavy users. Heavy users
cover only 3.5% of the total users from our measurement. Note that,
the label assignment as ‘heavy’, ‘regular’, and ‘light’ user is primarily
based on the median total download/upload bytes and the number
of sessions created per clusters from highest to lowest. These group
of users actively engage with their device as can be seen from the
number of sessions created by the user (top right column). These are
also users who get the highest download speed compared to the other
user groups. Moreover, they constantly hit the maximum network speed
of the network (constrained speed) at all times of the day. In the heavy
users group, there are more than 3.8M measurements collected from
399 unique users.

Users in cluster 2 can be considered as regular users. They cover
∼42% of the total users. Most of the time, regular users do not hit
the maximum network speed. In a cluster 2, there are more than
12.3M measurements collected from more that 4.7k unique users.
By considering the total measurement sessions from each cluster, we
observe that 86% of the sessions were collected over LTE networks
whereas the remaining 14% over 3G networks (i.e., 12% (HSPA+), and
2% of the time over the other 3G network families). We observed a
similar distribution between heavy and regular users in terms of radio
technology they accessed (i.e., 3G and 4G).

Cluster 3 consists of the majority of mobile users, which covers
∼55% of the users from the measurement dataset. These group of
users can be considered as light users. Light users consume lower
data volume (in both download and upload). They are less engaged
with their device as can be seen from the median number of sessions
created per user. There are more than 6.2M sessions generated from
∼4k unique users. Considering the total measurement sessions created
by light users, we observe that 69% of the sessions are created over
LTE network and the rest 31% over 3G networks (i.e., 27% (HSPA+),
and 4% over the other 3G network families).

To understand the reason why light users have accessed 3G network
more often than the other two groups, we study the user mobility
and the availability of network coverage. Users in this group have
visited the least number of unique tile-IDs (in the median case, 3).
Users in Cluster 1 and 2 have visited 15 and 7 unique tile-IDs in
the median case, respectively. This implies that the users accessed the
3G networks, either because their subscription plan was 3G networks,
or they were living in an area where there is no 4G coverage. To
investigate this further, we cross-checked the number of users that

never get access to the LTE network at least once. We found that about
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Fig. 1. The median distribution of different metrics per cluster for mobile users in Finland. Note the scale difference in both X and Y axes.
15% of users in the light user group have never gotten access to the
LTE network throughout the measurement period, while the rest (85%)
have accessed the LTE network at least once. Focusing on the 15%
of the users, we cross-check the location of the base station. We use
OpenCellID [46] service to map the location based on network MCC,
mobile network code, cell ID, and location area code, where users were
connected to. We observe that in the areas where these users moved
around have 4G radio coverage. This implies that users were accessing
the 3G network due to their data subscription plan, but not due to the
lack of 4G network coverage.

Fig. 2 shows the three clusters for the measurement data from
Brazil. It shows the median distribution of total download and upload,
the number of constrained and unconstrained speeds, the number of
sessions, and session duration per user at every hour for the three
clusters. Each cluster from 1 to 3 has 4.6, 59.7, and 35.7% of users,
respectively.

Cluster 1, covering the least number of mobile users (∼5% of the
users), are ‘heavy users’ with the highest median total download and
upload amount of ∼187 MB and ∼14 MB, respectively. This group of
users mostly accesses 4G networks in 89.4% of the cases, and they
visited six unique tiles on average, which is the highest from the other
groups. This indicates that this group of users move more frequently
from place to place than the other groups. They are also those who
mostly hit the network maximum since they have the highest number
of download constrained speed than the other groups. We study the
type of radio technology accessed by this group of users. We observe
that, from the total measurement sessions collected from these users,
63% of them were accessing the LTE network. This group has the
highest percentage in terms of accessing to LTE network. The rest of
the sessions were collected over 3G networks (28%).

Regular users (cluster 2) in Brazil cover ∼36% of the total users
from our measurement. They have the second data consumption value
in both total median download (∼30 MB) and upload (∼3 MB). Ob-
serving the radio technology distribution, from the total measurements
collected from this group of users, 60%, and 35% of them have been
measured over LTE and 3G networks, respectively. The majority of
users (60%) are light users, as shown in the figure labeled with cluster
3. They have a total median download and upload of 4.8 MB and 0.7
MB, respectively. Compared to the other groups, users in this group
have accessed the LTE network less frequently. From the total number
of sessions created by this group, only 44.5% of them were over the
LTE network. In more than 45.8% of the measurement sessions, there
5

were 3G networks, and in 9% of the cases, the network technology was
unknown due to different reasons (e.g., if the ITelephony interface is
not up [47]).

Similar to users in Finland, the number of light users in Brazil also
covers the highest percentage (60%), compared with the other clusters.
The majority of the sessions (46%) created by this group of users have
accessed 3G networks. We observe that only 33% of the sessions were
accessing LTE networks. Note that here there are also some sessions
with unknown radio technology. In both Finland and Brazil, we observe
that a significant number of light users have accessed 3G networks. For
instance, Light users in Brazil and Finland have accessed 3G networks
46% and 45.8%, respectively. When we consider the LTE, the users
in Brazil got 33%, and in Finland 44.5%. This difference in the LTE
network might be due to the penetration of 4G technologies in the
developed region than the third world countries. We notice that access
to the LTE network alone cannot be a determining factor for users’ data
usage behavior. This is evident as a large number of users accessing LTE
networks are observed in both light and regular user groups. Generally,
we observe that though the percentage distribution of heavy, regular,
and light users per the respective country has a similar trend, there
is a significant variation on the data consumption, access to the radio
technology type, and the number of sessions created under each the
clusters.

3.4. Application category per cluster

Currently, there are more than 2.7 million applications only in the
Google Play store [48]. From this plethora of applications, users need
to make a selective installation based on their needs and preference.
Different users have different preferences on the type of app they
want to access. Accordingly, users could spend a different amount
of time while using various apps. The amount of traffic generated
and consumed while accessing different types of apps also vary from
application to application. Google Play has multiple app categories,
where each category consists of numerous app types. For instance, apps
designed for streaming video, movies, and TV contents are grouped
with the entertainment category. We use the list of installed apps on
the users’ device to analyze which app categories contribute more to
each cluster group. Note that the installed app list does not include apps
that come with the device preinstalled by default. As a result, the list of
installed apps we are focusing on is all types of app categories that are
explicitly installed by users from the app store. We expect that focusing
on the variety of app categories intentionally installed by the user

reflects the interest and the data usage pattern of smartphone users.
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Fig. 2. The median distribution of different metrics per cluster for mobile users in Brazil. Note the scale difference in both X and Y axis.
To estimate the influence of the app category per user within each
luster, we calculate 𝑝(𝑎𝑖) — the proportion of a given app category
𝑎 being installed by the user 𝑖 as follows. 𝑝(𝑎𝑖) = 𝑎𝑖

𝐴𝑖
where, 𝑎𝑖 is the

umber of apps installed by user 𝑖 for the app category type 𝑎 and 𝐴𝑖
s the total number of apps installed by user 𝑖, irrespective of the app
ategory.

Figs. 3 and 4 show different application categories installed on
ach users’ device and their proportion values per cluster for mobile
sers in Finland and Brazil, respectively. We can see that heavy users
sually install app categories that consume much data volume in-
luding entertainment, video player, photography, and games. Regular
sers in Finland focus on entertainment, photography, social media,
inance, music & audio, shopping, food & drinking apps than the light
sers’ group. They frequently install apps related to weather, map

navigation, finance, sports, business, library & demo than heavy
sers. Differently, light users use apps related to education, tools,
ews & magazine, travel & local, and business app categories more
requently than the other two groups. However, when it comes to
asic applications such as productivity, weather, books and references,
hich consume relatively smaller amounts of data volume, we do not
bserve a significant difference in the number of apps installed across
he different user groups. Compared to Finnish users, Brazilian heavy
ser types have installed a few app categories that generate high data
raffic. Despite this, Brazilian heavy users still install video players,
hotography, and productivity apps more frequently than the other
roups. Regular users in Brazil use communication, shopping, sports,
ames, education, finance, professionalization, business, and weather
pps more frequently than the other two groups. However, light users
se social, map & navigation, lifestyle, entertainment, travel & local,
ooks & reference app categories more often than the other two groups.

The proportion values of installed app categories per cluster in
ome countries (e.g., FI and DE) show that heavy users install more
raffic demanding apps than regular and light users. Some of the app
ategories installed by heavy users in different countries include social,
hotography, video players, music and audio, gaming, and entertain-
ent app categories. Productivity, news and magazine, tools, maps &
avigation, and communication are app types often install by regular
sers than the other. In most cases, the app categories installed by
ight users are fewer than the other two groups. There are only a few
ases, such as entertainment and photography app types, where light
sers installed more frequently than regular users. We observe that
6

eavy users in Finland, the UK, and Germany have installed similar
app types more than users in Japan and Brazil. Japan heavy users
have installed apps categories such as photography, business, music and
audio, gaming, book and reference, libraries and demo. Heavy users in
five countries have photography as a common app category with the
highest proportion value. Social and video player app categories are
among the most commonly installed apps by heavy users in different
countries (found in at least three countries). App categories installed in
at least two different countries by heavy users include entertainment,
social, video, photography, music and audio, food and drink, and
personalization. For brevity, we opt out of the detail discussion of other
countries.

Considering the type of apps installed by users and the cluster labels,
we can observe that the installed app category by different user groups
across countries is not necessarily related to the data usage patterns.
This could be due to several reasons. For instance, users might install
the apps and seldomly access them or never use them on their devices.
We also noticed that the relation between the installed app types and
users’ data consumption patterns depends on the users’ location. For
instance, FI and DE heavy users commonly installed similar app cat-
egories (potentially generating more traffic) than the other countries.
These app categories include Entertainment, Social, Video Player, and
Photography.

Takeaway: User grouping (clustering) can be used to reveal differ-
ent types of users based on their data traffic consumption and usage
patterns. Generally, mobile users’ data usage patterns and behavior
can be categorized into three distinct user groups — heavy, regular,
and light. We have seen that data usage patterns of mobile users are
unevenly distributed, where few percentages of heavy users consume
the highest volume of the data. The type of apps installed by mobile
users could also be used as a hint and related with mobile users’
data usage patterns. Although these depend on users’ locations, we
have observed that heavy mobile user groups in some countries have
installed high data traffic demanding apps more often than the other
two groups. We also observed that there is a significant variance in the
amount of total data consumption and the number of sessions created
across different countries of similar user groups. In other words, a group
of mobile users that have been identified as heavy users in one country
might not necessarily be categorized as heavy users in another country.

4. Mobile user classification and prediction

This section presents a classification model that we have applied

to predict the mobile user type based on the labeled dataset generated
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Fig. 3. The proportion value of installed app categories per user within each cluster label for mobile users in Finland. Heavy users mostly installed apps that demand more traffic
than other group of users. Note the log scale difference on the y axis ticks.
Fig. 4. The proportion value of installed app categories per user within each cluster for users in Brazil. Compared with users in FI, the proportion of traffic demanding app types
installed by Heavy users in BR are very few. Note the log scale difference on the y axis ticks.
from clustering (Section 3). Studies such as [49] suggest that customers
are willing to pay flat-rate prices rather than being concerned with
the detail cost analysis provided by operators. However, due to finite
network resources, providing a flat-rate for all customers at all times
is still challenging. Moreover, few heavy users might potentially create
a bottleneck and become a cause for the poor experience to the other
nearby users, especially during peak hours.

Usually, MNOs are applying different (both static and dynamic)
pricing and traffic resource optimizing methods [50]. In addition to
the flat-rate data plan, tiered-based data services and usage-based data
plans are also the common types of data plan pricing schemes. For
instance, operators such as AT&T propose to apply speed tiers in the
upcoming 5G network [51]. These types of data plans can be used for
optimal target pricing towards the users’ traffic demand and data usage
patterns. To achieve this, users’ data usage patterns and behavior need
to be predictable. If users’ data usage behavior is predictable, MNOs can
apply an incentive mechanism targeting their customers. For instance,
operators may lower the price for heavy users if users can shift their
high traffic demanding tasks from peak hours to off-peak hours. We
now develop a model that helps to predict the type of users in cellular
networks based on users’ data usage patterns and behavior.

Using labeled clustered dataset as an input, we apply a supervised
machine learning algorithm to train a model that classifies user groups
based on their group cluster labels. The prediction model does not
consider the installed app category feature as detailed information
7

about the app is not easily acquired (e.g., due to privacy), and the
app category alone might not be precise enough. Since the variation
between the number of users per cluster is very high, we have an
imbalanced dataset. That is, the impact of majority class labels will
overwhelm the classification model. Also, the minority cluster labels
(e.g., clusters with a few numbers of users) could be missed out, even if
the classification accuracy report is higher [52]. For instance, the clus-
ter label imbalance ratio between heavy and regular users in Finland
is ∼14. As a result, directly performing a general classification model
on the existing clustered dataset could lead to a spurious mode that
does not consider the impact of the minority class labels. To address
this, we first apply the Synthetic Minority Over-Sampling Technique
(SMOTE) [53] and Adaptive Synthetic (ADASYN) [54] methods. These
techniques create new synthetic data points based on the observations
of the actual dataset so that all the minority observations are oversam-
pled and balanced. Note that, the accuracy we found by applying both
techniques at a different time is closely similar. The reported accuracy
is based on the SMOTE.

We take the clustered dataset from Finland as input; first, we split
the dataset into two — testing and training datasets. The data split is
performed with a ratio of 20% and 80% for the testing and training
datasets, respectively. Then we train the classifier on the training
dataset. Note that we perform the training with different classifier
algorithms, such as the decision tree, gradient boosting classifiers, and
random forest (RF). We found that the RF classifier method gives a
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Table 4
Confusion matrix for RF classification in Finland.

Predicted Actual

Heavy Regular Light

Heavy 17 531 1033 1004
Regular 1478 12 851 5138
Light 192 2839 16 259

Fig. 5. Rank of important features from RF classification.

etter classification result than the other tested algorithms (a detailed
nalysis is omitted for brevity). By applying an exhaustive grid search
long with ten-fold cross-validation, we found the optimal parameter
alues of the RF classifier. Accordingly, the model is trained by setting
he depth of each tree in the forest (max_depth) to 32, the minimum
umber of data points allowed in a leaf node (min_sample_leaf)
o 10, and the number of trees in the forest (n_estimators) to 500.

The classification model of the RF model has accuracy of 87.5% and
79.9% on the training and the test, respectively.

Table 4 shows the confusion matrix of the three cluster labels for
the RF classification model. The recall value of heavy, regular, and light
class label are 91%, 77%, and 73%, respectively. The precision values
are 90%, 66%, 84% for heavy, regular, and light, respectively. The F1-
Score, which is the harmonic mean of precision and recall, is 90.5%,
71.1%, and 78.1%, for heavy, regular, and light class, respectively. The
highest F1-score value, especially for heavy user type, shows that the
RF model fairly clarifies the data usage pattern of mobile users with
good precision and recall.

Fig. 5 shows the order of features based on their contribution to
predicting the cluster labels. We observe that the number of times the
user download contents over unconstrained speeds, the number of tiles
visited by users, the number of sessions created per user, and total
upload/download traffic contributes more to the classification model.
These variables have been also played a significant role during our
clustering model as we have seen in Section 3.

Takeaway: Predicting data usage patterns and behavior of mobile
users can be used to optimally target towards users’ data traffic demand
and usage patterns. In this section, using the labels of the clusters as
input features, we develop a classification model that helps to classify
mobile users’ data usage patterns. From the rank of important features
that have been used for classification, we observe that the presence or
absence of congested network and user mobility play a role in mobile
users’ data usage patterns.

5. Related work

Several studies analyzed the data usage patterns of mobile users in
cellular networks (surveyed in [55,56]). Previous work such as [57–
59] studied mobile users’ app usage behavior by considering different
network usage and app related activities (e.g., installing, uninstalling,
and updating). Shafiq et al. [5] model traffic dynamics on mobile
devices using a week-long dataset collected from the operator’s core
8

network. They study traffic dynamics and characteristics of applications
on three different cellular device brand families. They show that the
type of device attributes to different traffic behavior.

Yang et al. [33] characterize user behavior in terms of mobility, data
usage, and application usage pattern based on a dataset collected from
2G and 3G core networks in China. Similarly, the authors in [14] study
the patterns of mobility and temporal activity as well as how the radio
resources are utilized by different applications using a dataset collected
from 3G core networks. The authors show that traffic distribution per
subscribers is uneven, such that 90% of traffic load in the 3G network
is generated by 10% of the subscribers. A study by Oliveira et al. [19],
the closest study with our work, characterizes mobile users’ data usage
behavior based on the data collected in a 3G network in Mexico. The
authors profile mobile users into three classes (light, medium, and
heavy users) by using metrics such as the number of sessions, traffic
volume, and inter-arrival time. Other studies such as [60,61], and [62]
study human mobility patterns and behavior in mobile networks. These
studies show that the mobilities of mobile users have patterns overtime
of a day and location.

Falaki et al. [24] study traffic generated from smartphone users
along with user interaction with their devices from 255 users. The
authors show that user interaction with the device contributes to higher
battery consumption. Yu et al. [22] show that users’ app usage behavior
and dynamics in a given location can be predicted by using the point
of interest (POI) information of that location. Authors in [23,63] study
application usage patterns of smartphone users and differentiate differ-
ent groups of mobile users. Zhao et al. [23] apply K-means clustering to
group Android mobile users application usage behavior and show that
there are a more diverse set of mobile app usage patterns characterized
by their age, income level, and demographics.

Canneyt et al. [64] study mobile users’ app usage behavior by
investigating users’ engagement patterns with their apps. They use data
collected using Flurry app analytics tool [65]. The authors show that
mobile users’ app usage activity and disruption patterns are correlated
with major events such as sport and political events. Zhang et al. [66]
study the characteristics of cellular data traffic based on HTTP-based
traffic traces collected from cellular and fixed-line networks. They
investigate different applications using packet, flow, and session-level
traffic metrics in comparison with cellular and wire-line networks. They
show that cellular networks have multiple short flows than wire-line
networks. The authors cluster different applications based on similarity
patterns observed using the inter-packet gap, flow, and session size
as metrics. They indicate that the inter-packet gaps between differ-
ent applications have a significant variation and suggest application
dependent based optimization methods.

Oliveira et al. [67] characterize temporal data usage of mobile users
using a dataset collected from a large group of people accessing the
3G networks. The authors classify the data usage into six patterns and
show that mobile users can be profiled into daily peak and non-peak
temporal data usage periods. Wei et al. [68] study the characteristics
of network traffic generated from hand-held devices of users while
accessing campus Wi-Fi networks. They show that the amount of traffic
generated by users has a broader variation (from MB to several GBs),
based on users’ habit and demand. Qin et al. [69] and Wu et al. [70]
use a dataset collected from cellular network operators in China, where
the datasets are generated from mobile users while accessing different
services. The authors characterized traffic patterns and application
usage of mobile users to propose a model that predicts the traffic
demand of mobile users.

Data usage patterns and user behavior in mobile networks have not
been explored very well. Most previous studies are either limited to
application usage pattern and identification [20,21,23,71]; focus on a
single cellular core operator network and area [61,72]; consider few
number of users [24]; or is specific to application types [71]. Our
work focuses on the clustering of mobile users’ data usage patterns and

behavior analysis based on ∼113 million data records collected from
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end-user devices. It covers the vast geographical and user-space in five
different countries. We study by considering different network features
that could determine data usage patterns of mobile users. The features
include data traffic consumption, the number of sessions created per
user, network congestion and coverage, user mobility, and the app
types installed by users. Our study considers both data traffic flows and
application types installed by mobile users.

6. Limitations

The dataset we have used has been collected from only Android
mobile users as the current measurement platform does not run on
other mobile operating systems (MOS). As a result, mobile users using
other platforms such as on iOS and Windows are not considered in
our study. As future work, it is important to study data usage patterns
of mobile users accessing other than Android MOS and make a com-
parison among them. The demography of mobile users is not taken
into consideration since we do not have the information. As another
dimension of a study, it is possible to use the Netradar measurement
platform augmented with demographic data. It can be possible to
conduct data usage patterns with targeted mobile users of different user
groups. For instance, whether mobile data usage varies by age, income
level, and education status. Since it is a crowd-based measurement, the
measurement might be limited to a certain group of mobile users who
are curious and want to monitor their network performance. However,
these groups of users are also essential as they are most likely active
mobile users and could be affected by the quality of mobile network
performance.

7. Conclusion

We studied mobile users’ data usage patterns and behavior. We
used a month-long dataset with more than 113 million measurement
sessions collected from the crowd across five countries. We defined data
usage patterns of mobile users by considering different factors such
as network congestion, type of radio technology users have accessed
(3G and 4G), user mobility, and the total bytes consumed per user.
Using this definition, we applied an unsupervised clustering model
to identify different types of mobile users based on their data traffic
consumption and usage patterns. Our clustering model shows that there
are three (heavy, regular, and light) different usage patterns across the
five countries we studied, characterized by a small number of heavy
users consuming the highest volume of data. We showed that there is a
significant variance in the amount of data consumption and the number
of sessions created across the different countries per similar group. We
also showed that in some locations the type of apps installed by mobile
users has a relationship with mobile users’ data usage patterns and user
groups. Finally, by using the clustered dataset as an input, we trained a
classification model that helps classify the data usage patterns of mobile
users with accuracy of ∼80% in the test dataset. The predictability of
ser behavior in mobile networks can be applied for optimal resource
anagement based on users’ data usage patterns.
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ist of acronyms

NO Mobile Network Operators

NOs Mobile Network Operators

oS Quality of Service
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MCC Mobile Country Code

MOS Mobile Operating Systems

PGM Probe Gap Model

PRM Probe Rate Model

SMOTE Synthetic Minority Over-Sampling Technique

ADASYN Adaptive Synthetic

LTE Long Term Evolution

HSPA+ Evolved High Speed Packet Access

WCSS Within Cluster Sum of Squares

SS Sum of Square

PCA Principal Component Analysis

RF Random Forest
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