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Abstract—The increasing trend of the traffic demand from
mobile users and the presence of limited resources creates a
challenge for network resource management. Understanding the
data usage pattern and traffic demand of mobile users is a way
forward to enable data-driven network resource management.
However, due to the complex nature of mobile networks, under-
standing and characterizing data usage pattern of mobile users
is a daunting task. In this work, we investigate and characterize
data usage patterns and behavior of users in mobile networks.
We leverage a dataset (∼340M records) collected through a
crowd-based mobile network measurement platform – Netradar
– across six countries. We elucidate different network factors
and study how they affect the data usage patterns by taking
mobile users in Finland as a use case. We perform a comparison
on data usage patterns of mobile users across six countries by
considering total data consumption, network access, the number
of sessions created per user, throughput, and user satisfaction
level on services. We show that data usage behavior of users over
a mobile network is primarily driven by user mobility, the type of
data subscription plan marketed by Mobile Network Operators
(MNOs), network congestion, and network coverage. Besides,
the data usage patterns over different network technologies
(e.g., preferring cellular over WiFi) and the percentage of users
accessing congested networks vary by country; mostly due to the
market pricing strategy and radio coverage. However, the overall
data consumption (cellular and WiFi) is comparatively similar
in most of the countries we studied.

Index Terms—Network performance, Cellular network, Mobile
user behavior, Data usage patterns, SLS, User satisfaction.

I. INTRODUCTION

The advancements in mobile technologies and the need for
ubiquitous communication by mobile users bring with them an
increased growth in mobile data traffic. Mobile users regularly
use data-intensive applications (video streaming and gaming)
from their devices on the mobile network. Reports show that
a significant share of Internet traffic generated from mobile
devices increasingly consists of multimedia content [1], [2],
[3], [4]. According to a report by Ericsson, in 2018, video
content solely generated 60% of the mobile data traffic and is
expected to cover 74% of the traffic by 2024 [5]. Furthermore,
the projection shows that in 2022 the global mobile data traffic
will be twelve times more than that of 2018 [6].

The mobile network is becoming a complex system to keep
up with the ever-increasing demand for mobile traffic [7]. The
increase in the traffic demand, the complexity of the network,
and the number of connected users create a challenge for

network resource management. The growth of mobile users
and traffic demand also brings a challenge in understanding
data usage patterns of mobile users for content providers. Ser-
vice providers need to efficiently manage available resources
based on data usage behavior of their customers. Studies
also show that data usage patterns of different applications
have a significant impact on energy consumption of mobile
devices [4]. Understanding the data usage patterns and behav-
ior of mobile users at different locations and market-places
are paramount for service and content providers, and end-
users. Mobile network operators can utilize the information to
manage the increasing demand for mobile data usage [8], to
plan and to optimize telecommunication resources [9], [10]. It
can also be used to develop different data plan products [11] by
targeting potential users. Similarly, policymakers and content
providers will have more information to improve the quality
of services, to understand urban dynamics [12] for improved
urban planning [13].

In this paper, we characterize the data usage patterns and
behavior of mobile users across six countries. We further
investigate how data usage patterns vary by different factors
including time of the day, user mobility, location, the device
model, network performance (e.g., throughput and latency),
and the coverage of radio technologies.

There are previous studies that investigate mobile user
data usage behavior and have focussed on user location and
user mobility patterns [14], [15], temporal dynamics [16],
and Quality of Experience (QoE) [17], [18], [19]. However,
most of the previous studies are either limited to a single
operator [20], only target a specific city and location [21],
study data usage behaviour targeting application types ac-
cessed by users [22], [23], [24], [25], or consider only a few
measurement data and user spaces [26]. Unlike these studies,
our work uses a large crowd-based dataset collected using
Netradar [27] – a mobile network measurement platform. The
dataset covers a wide range of geographical areas, Mobile
Network Operators (MNOs), and mobile users.

The paper starts by laying the foundation for understanding
the basic mobile network features related to data usage patterns
of mobile users and their behavior. This includes investigating
the relationship between data consumption (volume), session
duration, user mobility, and the ratio of data consumption over
WiFi versus cellular. The paper also provides a comprehensive
view of the data usage pattern of mobile users in Finland



in comparison with five other countries. Using a large-scale
dataset (∼340 million records) collected from six countries,
this paper presents the following main findings –

First, we show that stationary users consume more data and
are more likely to run into network congestion than users on
the move. We observe that users with the latest device models
have created more sessions, which is an indicator of active
interaction of the users with their device. On the other hand,
new devices with the latest Operating System (OS) version
have relatively fewer total downloaded bytes when compared
with devices that have older OS versions. This is due to
frequently accessed content that is likely to be cached locally
on newer devices with relatively better hardware specification
such as higher memory capacity and processing power.

Second, we show that network throughput has a strong cor-
relation with overall user data consumption. We also observe
that different MNOs in the same country have an impact on
the total data consumption of mobile users, as the network
coverage and the maximum achievable speed could be limited.

Third, we investigate and compare user satisfaction levels
on mobile network performance across six countries. If the
data subscription plan is priced by data usage, then it is more
likely that users reserve themselves from using applications
that consume high data traffic. Service Level Score (SLS) is
a method that measures satisfaction level of the mobile users.
It considers the ratio of the number of times that users have
received what they need from the network. The different value
of SLS score across countries reveals that user satisfaction
score can be higher if mobile users are conservative on how
they use their mobile data. On the other hand, observing the
total data consumption on both cellular and WiFi networks,
we observe that mobile users across countries have a closely
similar data consumption trend.

The goal of this paper is not to propose a new mining
algorithm, but to study data usage patterns of mobile users
across different locations using existing statistical algorithms.
The paper is structured as follows: §II presents the mea-
surement platform and the dataset used for the analysis. §III
presents the study of individual network features contributing
to the data usage pattern and behavior. §IV investigates the
relationship between network performance and data usage
patterns of mobile users. §V studies the data usage behavior of
mobile users in six different countries. Finally, §VI discusses
related work, and §VII concludes the paper. To encourage
reproducibility [28], the dataset and scripts used in the analysis
are publicly released to the community [29].

II. METHODOLOGY

A. Measurement Platform
Netradar [30] is a crowdsourced mobile measurement plat-

form. It measures the link capacity of cellular networks using
a hybrid of Probe Gap Model (PGM) and Probe Rate Model
(PRM) [31] probe-based measurement methodologies. PGM
and PRM utilize packet pair [32] probes to estimate the avail-
able bandwidth. For a detailed description of the measurement
platform and its validation, we refer the reader to [33]. Going
forward, we present a brief description of the measurement
platform and the dataset relevant to this study.

The Netradar measurement platform passively listens on the
ingress and egress traffic at the client side without imposing
any synthetic traffic of its own. The application on the client
device runs in the background until it is triggered when a user
starts sending or receiving data. The application then starts
sampling the traffic rate of the ingress and egress traffic (e.g.,
on Android using Android traffic Stat API [34]).

The measurement is recorded based on sessions. A session
refers to the continuous traffic flow of content between a user
device and a remote server. A given session has a duration,
within which different ingress (and egress) traffic can flow, but
the application does not have any visibility on the type of its
content. A session duration is defined as the interval between
the starting time of the sampling phase until the traffic stops.
The session starts when there is enough traffic flow in either
the uplink or downlink direction and ends when the traffic
rate goes below half of the threshold for two seconds. The
threshold for starting the session is 100 Kbps and 200 Kbps
for uplink and downlink direction respectively. The duration
of the session can be from milliseconds to minutes long, while
sessions that have very few bytes transferred are not recorded.

The platform also records unconstrained and constrained
speeds of the network. An unconstrained speed is the speed
that the user needs from the network to use mobile apps, but
at the same time also does not hit the maximum speed of the
network during the session. On the contrary, the constrained
speed is the maximum speed recorded when the network was
a limiting factor. It is inferred based on the queuing delay of
packets, the available bandwidth, and latency. The constrained
speed is not recorded when there is no latency information, or
when a user never hits the maximum speed of the network.

A given session may have only uplink or downlink data
recorded. For instance, if the user is watching a video on
YouTube, most of the sessions are on the downlink. As such,
there are few traffic flows that are not statistically significant
to keep records related to the uplink information. On the other
hand, when a user is uploading a picture to Facebook, then
most traffic flows are in the uplink direction instead.

Every session has a unique identifier with its own starting
and ending time and other metadata information related to the
session. Each measurement session consists of the following
meta information: device information, MNO of the subscriber,
location, user velocity, and installation (user) ID. The metadata
also records information about network type (WiFi or cellular)
and accessed radio technologies (2G, 3G, 4G) with radio
Quality of Service (QoS) values such as Reference Signal
Received Power (RSRP) that help to decide handover or
cell re-selection. The constrained and unconstrained speeds
for both download and upload with respective session length
are also recorded. Besides, every session also contains the
average download and upload speed, total uploaded bytes, total
downloaded bytes, latency, battery level, signal strength, and
information about the base station (e.g., cell ID, area code,
radio frequency channel number). Every session has associated
tile information (e.g., tile-ID, country, city, population density,
postal code), where the tile-ID is the area coverage of 100 by
100 square meter.
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TABLE I: Number of users and sessions created in the cellular
and WiFi network separated by country.

Country # of sessions (M) # Users
Cellular WiFi Cellular WiFi

Finland (FI) 35.1 26.0 22795 16200
Germany (DE) 6.3 17.8 6548 6381
United Kingdom (UK) 34 90.4 20569 20927
Japan (JP) 19.8 50.1 8081 8583
Brazil (BR) 17.8 42.9 7164 8368
India (IN) 2.5 5.8 1665 1786

B. Dataset

The dataset used in the analysis has been collected using
Netradar from the devices of mobile users in six different
countries (Finland, Germany, the United Kingdom, Japan,
Brazil, and India) for one month (recorded in July 2018).
Mobile users are assigned to the respective countries based on
the Mobile Network Code (MNC) and Mobile Country Code
(MCC) values. In other words, a user in a given country has to
be a subscriber of one of the MNOs in that country and should
access the network from within the same country. In this study
we do not consider roaming [35] users. Table I summarizes the
number of users and sessions created per respective countries
in both cellular and WiFi networks.

Note, unless specified by the name, 4G refers to all re-
leases of Long Term Evolution (LTE) radio technology. 3G
refers to all other releases of radio technologies prior to
LTE (including High Speed Packet Access (HSPA), Evolved
High Speed Packet Access (HSPA+), and Universal Mobile
Telecommunications System (UMTS)). 2G refers to releases
before UMTS (such as General Packet Radio Service (GPRS),
and Enhanced Data rates for GSM Evolution (EDGE)). As
such, cellular network stands for all of the aforementioned
cellular radio technologies. WiFi refers Internet connectivity
through Wireless Local Area Network (WLAN) including the
variants of IEEE 802.11 protocol standard.

In §III and §IV, we present analysis based on measurement
data collected from Finland. We choose Finland as we have
sufficient measurement samples and we understand the mobile
market in Finland better than in other countries. As such,
Finland is first presented as a case study to investigate features
with respect to data usage patterns in mobile networks. Later,
in §V, based on our previous observations, we compare the
data usage patterns of mobile users across six countries by
considering various features related to mobile networks.

III. DATA USAGE BEHAVIOR IN FINLAND

We investigate data usage patterns of mobile users in terms
of the number of created sessions, average session duration,
and amount of traffic flows in both cellular and WiFi networks.
We also study the association of temporal dynamics, users
mobility, and device models to data usage behavior.

A. Data Volume and Sessions

As shown in Table I, during a month-long measurement
period in Finland, there are more than 61M sessions created
from ∼22.7K users that were accessing cellular and WiFi

(a) (b)

Fig. 1: Monthly and daily download amount (MB) per user.
Mobile users in Finland consume more data over cellular
network than WiFi.

networks. Out of these, ∼35.1M and ∼26M of the sessions
are created when the users were accessing the Internet over
cellular and WiFi networks respectively. From all the cellular-
based dataset collected in Finland, 80% of the sessions were
established over LTE; 16% over HSPA+, and the remaining
4% of the sessions were created over other radio technologies.

Data volume – The intensity of data consumption by mobile
users can be indicated by considering the total traffic flow (of
bytes) through individual devices. Fig. 1 shows the monthly
(total) and the daily (average) consumed bytes per user in
Finland over cellular and WiFi networks. Observing at the
95th percentile, monthly data consumption of cellular and
WiFi users is less than 42.5 GB and 19.6 GB, respectively.
For mobile users in Finland, the total data consumption over
cellular networks is about two times more than that over the
WiFi network. For instance, considering the median daily case,
cellular users consumed more data (3999 MB) than WiFi users
(2406 MB). We compare the numbers of unique users that
downloaded more than 10GB in a month under each cellular
and WiFi network. We found that 27.5% and 14.5% of the
users that have accessed cellular networks and WiFi networks,
respectively have consumed more than 10 GB. The daily
average download data consumptions per user over cellular
and WiFi networks show a similar trend as the monthly total
download consumption, as shown in Fig. 1 (b). For instance,
the median daily consumption in a cellular and WiFi network
is 195.2 MB and 110.6 MB, respectively.

The higher data consumption over a cellular network than
over a WiFi network shows that mobile users in Finland
mostly prefer to access the Internet over a cellular network
and thereby tend to consume more data over a cellular net-
work than over a WiFi network. A possible reason for this
observation can be related to the availability of good mobile
network coverage and the flat-rate data subscription plans at an
affordable price [36]. This likely encourages mobile users to
access the Internet over the cellular networks for most aspects
and they tend to remain connected to the Internet over cellular
for a longer time [37]. According to the survey taken from
2011 to 2017 in Finland [38], the number of mobile data
subscriptions with unlimited data plans have increased while
all other data subscription types have decreased during the
given time frame. For instance, in 2017, the number of users
with unlimited data was around 71.2%, while all other data
subscription types covered only 28.8% of mobile users.

Sessions – The number of sessions created per user and
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(a) (b)

Fig. 2: Distribution of session duration and number of sessions
as observed per user. The vertical line refers median value.
Both the session duration and the number of sessions created
over cellular and WiFi network has only a marginal difference.

their session duration can both be used as an indicator for
data usage activity and interaction of users with their devices.

To observe the average session duration per user, we
grouped every session by user and calculated the average
session duration. Fig. 2 (a) shows the distribution of the
average session duration per user over cellular and WiFi
networks. We observe that in the median case, cellular and
WiFi-based measurements have a marginal difference in the
length of the sessions. The median session duration is ∼7
seconds in cellular and 6.0 seconds in WiFi networks. The
variance in session duration is higher over cellular network
(variance (v) = 46.2 seconds2, mean (m) = 8.4 seconds and
standard deviations (Std. dev.) = 6.8 seconds) than WiFi (v =
31.4 seconds2, m = 7.2 seconds and Std. dev. = 5.6 seconds).
The higher variation in session duration of users in the cellular
network reflects bursty arrival pattern of packets [39] and also
the range of different (from heavy to light traffic demanding)
application types that users could use. In both cellular and
WiFi networks, the life span of majority of the sessions are
relatively shorter. For instance, considering the 95th percentile,
the session duration in cellular and WiFi networks are 16.4
seconds and 14 seconds, respectively. This result is in line
with the previous study [40]. The authors showed that in more
than 90% of the cases, the sessions generated from Facebook
and WhatsApp apps for both multimedia and text content are
less than a minute.

We also study the number of sessions created per user. Fig. 2
(b) shows the distribution of the number of sessions created
per user in a month for both cellular and WiFi network. The
daily median number of sessions per user is 120 and 116 in
cellular and WiFi networks, respectively. The total amount of
bytes downloaded, the number of sessions created per user,
and the session duration confirm that mobile users in Finland
prefer a cellular network for most of their Internet activity
over the WiFi network.

Furthermore, we study the relationship between the total
download bytes and the number of sessions created per user.
Fig. 3 shows the total downloaded bytes compared to the
number of sessions created per user for both cellular and
WiFi networks. We observe that there is a strong positive rela-
tionship between the total downloaded bytes and the number
of sessions created per user (Pearson correlation coefficient
(r) = 0.69 and r = 0.801 over cellular and WiFi networks,

(a) (b)

Fig. 3: Total consumed bytes compared with the number of
session per user per hour. There is a strong relationship
between users’ interaction with their device (the number of
sessions created per user) and the total data consumption.

(a) (b)

Fig. 4: Inter-session gap compared with # of sessions (b) and
total download bytes (a) per user. Users with lower inter-
session gaps have higher number of sessions and data volume.

respectively. On the other hand, there is a moderately positive
correlation between the total download bytes and the session
duration (Pearson r = 0.312 and r = 0.401) in cellular and
WiFi networks, respectively). Note that, in all of Pearson’s
correlation coefficient, the p-value was significantly lower than
0.05. We observe a similar trend in the relationship between
total uploaded bytes and the number of sessions created per
user (not shown in the plot).

When investigating the session duration and the total down-
loaded bytes per user, we observe that cellular users in Finland
have bursty usage (median 21.3 Mbps) which lasts from 0.2
seconds to 6.5 seconds. About 4.7% of users continuously
access the network (median 12 Mbps) for a session duration
of more than a minute. Only 0.35% of the sessions have a
duration longer than two minutes, of which the majority of
these sessions (∼68%) were accessing the cellular network.

Fig. 4 shows the scatter plot of inter-session time gaps
compared to the number of sessions and total downloaded
bytes per user. We observe that inter-session time has a strong
negative relationship with both the number of sessions and to-
tal download bytes per user (Spearman correlation coefficient
(r) = -0.524, p-value = 0). As defined earlier, a session creation
starts when there is a flow of at least five IP packets and stops
when there is no traffic flow for two seconds in either uplink
or downlink direction. The inter-session gap per user indicates
the regularity of such sessions and data transferring behavior
of applications. Some video streaming applications download
a chunk of content every few seconds, where the length of
the download depends on how much content is needed to fill
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Fig. 5: Heatmap of total downloaded bytes per user over cel-
lular network. High volume of data consumption is observed
during “off-duty” time for most of the days.

the players buffer size [41]. A study on Netflix streaming by
Adhikari et al. [42] shows that once the player buffer has
filled, the subsequent download events happen at about every
four seconds interval. Siekkinen et al. [41] also identified that
YouTube player in Galaxy SIII device has an “off” period of
60 seconds after it fills the players’ buffer. Similarly, let us
assume that a streaming application schedules the download
for every x seconds, for x greater than the two seconds idle
time. In that case, if there is no other active traffic during the x
second scheduled time, the session will stop as it would pass
the two seconds ideal time. Immediately after the scheduled
time is over, new traffic will show up at the ingress, and a
new session will start recording. As a result, such category
of applications will have shorter inter-session gaps, but higher
download bytes and number of sessions.

B. Temporal Dynamics

We study how mobile data usage of individual users varies
over time of the day. Understanding the temporal dynamics of
data usage patterns can be a useful input for efficient network
resource management such as for energy saving. For instance,
MNOs can utilize temporal usage pattern of peak or off-peak
hours and temporarily turn off some of the transceivers or even
the entire base stations to save energy [43], [44]. In addition,
application developers and maintainers can also adjust the time
of app updates (e.g., for apps where the auto-update option is
enabled) during a period of low traffic.

Fig. 5 shows the total downloaded bytes per hour by users
every day of the week. The color bar on the right side shows
the total bytes downloaded by all users at every hour in the
given day. We can observe that especially during day time
(from 8:00 to 22:00), there is more data consumption in most
of the weekdays. Whereas, after midnight the total download
bytes are scaled-down, as people go to bed. We study the
hourly (total) downloaded bytes per user over 24 hours in a
month for mobile users in Finland and observe that mobile
users preferred cellular networks over WiFi in 100% and
83% of the time for uploading and downloading, respectively.
For mobile users that prefer WiFi over cellular, the majority
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Fig. 6: Number of sessions in a cellular network. Monday and
Tuesday show the highest user activity, following a similar
trend with data consumption of users.
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Fig. 7: Data consumption by days of the week. Over the
cellular network, weekdays appear similar to weekends, while
data consumption during weekends is relatively higher (to
weekdays) over the WiFi networks.

accessed WiFi networks during the working hours (14:00 to
17:00) than during off-working hours (at home).

Fig. 6 shows the total number of sessions created by
users (as a heat map) per time of a day in every week
day. The sessions were created while users were accessing a
cellular network. The higher number of sessions during peak
hours suggest that users were frequently interacting with their
devices (especially on) Monday, and Tuesday.

The (total) downloaded bytes during the weekdays have a
closer similarity to the weekends over cellular networks as
shown in Fig. 7. However, downloaded data consumption per
user during weekends is comparatively higher than during
weekdays over the WiFi networks. For instance, Sundays have
a higher (total) download consumption over WiFi at most of
the times of the day. We suspect that during weekdays, users
maybe spend most of their time indoors and tend to use WiFi
more often than the cellular network.

We also explore whether users prefer downloading or up-
loading content over a certain time of the day. To do this
end, for every user, we calculate the hourly average values
of the total downloaded (and uploaded) bytes transferred
during the month. We then calculate the difference between
the total download and upload bytes over time of a day,
i.e., ∆Bytes(MB) = TotalDownload − TotalUpload. We
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Fig. 8: Distribution of total downloaded bytes per user. Sta-
tionary users consume more data than users on the move.

observe that about ∼6% of the time, the total upload is greater
than the total download bytes. During night time (from 3:00
AM to 5:00 AM) the difference between download and upload
bytes are marginal (50% of the time, the difference is close
to 0). On the other hand, during the day time, the difference
between download to upload over the time of the day follows
a similar trend. For instance, from 12:00 to 23:00, about 25%
of the measurement have less than 1MB difference.

C. User Mobility and Data Usage

We further study under which mobility conditions (when
stationary, walking or commuting in a train for instance) users
usually consume data. We focus on the measurement sessions
conducted only over cellular networks due to their increased
availability in such mobility scenarios.

We use the velocity of a user (in m/s) over the ground
inferred from the OS of the device. We filtered data that
has a GPS location accuracy of less than 100 meters. As
the location accuracy relates to the deviation in meters, the
lower the number, the better the accuracy of the location
and the velocity [45]. Since the current maximum commuting
velocity in Finland is ∼220 km/h, the data is filtered further
such that the maximum velocity is not over 220 km/h. We
then divide the dataset into mobile and stationary users based
on the velocity value. In our case, mobile users are users
whose velocity is greater than or equal to 1 m/s. Stationary
users are users whose velocity is precisely 0 m/s. Here, to
avoid variance, we do not consider measurements where the
velocity is unknown. After filtering the data, users accessing
their device on the move have the median velocity of 41.8
km/h, while only 5% of the values are above 88.2 km/h.

Fig. 8 shows the total downloaded bytes per user for
stationary and mobile users. We observe that the ratios of
cellular users at a stationary location are almost about 1.5
times greater than users that were moving from place to place
(20K users at a stationary location vs. 13K users on the move).
We also compared the median download speed that the users
get when they are moving and when the are stationary. We
found that stationary users get higher download speed (twice
faster) than users on the move. Similarly, stationary users
consume more data (median download is ∼76MB) than moving
users (median download is ∼6MB).

Fig. 9 shows the relationship between user mobility (based
on velocity) and the average session duration (a), the number
of sessions created (b), and the total download bytes consumed

(a) (b) (c)

Fig. 9: User velocity (m/s) compared with the number of
sessions, the average session duration, and total download
bytes. There is a moderately positive relationship between
velocity and the number of sessions created by users.

per user (c). The number of sessions created by users and the
velocity has a positive correlation (Spearman r = 0.57, p-value
= 0.0). This indicates that users in a commuting train, tram, bus
or as passengers in a moving vehicle, etc. spend most of their
time interacting with their smartphone. Note that, the positive
relation might not directly infer the quality of the network
(e.g., throughput) users are getting while on the move. Instead,
the relation is indicative of how often users are engaged with
their device. We found that throughput and velocity are neg-
atively related (Spearman r=-0.29, p-value=9.059e-204). This
has also been noted in previous studies such that as velocity
increases the throughput could degrade due to reasons such
as frequent handovers, delays in connection establishment,
packet loss, and signal interruption [46], [47]. The positive
relationship between number of sessions and velocity values
also indicate that users walking on foot or riding a bicycle are
less likely to use their smartphone. On the other hand, as long-
distance trains and metros move at high-speed, mobile users
on such a commute will spend more time using the Internet
with their devices; although the throughput might decline as
mobility increases. As the number of sessions created per user
is strongly related to the total download bytes (see: §III-A),
the velocity should also have a positive relationship with total
download bytes (Spearman r = 0.42, p-value = 0.0). When
we consider measurements with a velocity greater than 0 m/s,
users sitting in a commuting train or a bus (with relatively
higher velocity but in a comfortable position) will interact
with their mobile device more often than users walking or
bicycling (with relatively with lower velocity). In terms of total
download and data consumption, we have observed high data
volume even in the lower tail of velocity. This could be related
to the type of application users might have accessed; for
instance, users might stream music while walking or bicycling.

On the other hand, session duration and velocity are
negatively related (Spearman r = -0.17, p-value=8.69e-202).
Similarly, the average session duration and the number of
sessions created per user are also negatively related (Spearman
r = -0.26, p-value = 8.69e-202). This can be associated with
the presence of frequent handovers as users are on the move.
At a higher velocity, users are most likely forced to leave the
current serving cell and join the next target base station. As
a result, it is possible to observe several number of sessions
with a shorter life span.

User mobility can also be inferred from the number of base
stations visited per user. The typical coverage of a cellular
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Fig. 10: Unique number of base stations visited by users. Note
the scale difference on y and x axis. About 28% of the users
remain within a single base station coverage per day.

base station tower is in the range from 200m to 1km in urban
areas and from 1km to 5km outside of the city areas [48].
In our case, the base station is identified as a combination
of MCC, MNC, Location Area Code (LAC), and Cell ID
(CID) [49]. The number of different base stations visited by
users in a given time interval can be used to infer how far
users travel from one place to another location. For instance,
if the user travels from home to the working place every day,
there is a high probability that this user is going to visit more
than one base stations. We consider the frequency of unique
base stations visited by the mobile users per given time to
estimate how often the users are moving from one place to
another place. This is useful to understand how many times the
mobile users move outside the coverage area of a given base
station and to investigate the relation it has with data usage
patterns. Knowing the patterns of the dynamics of mobile users
and the associated peak/off-peak traffic hours can be useful
input. For instance, operators could dynamically configure the
coverage area of the cell based on the traffic demand and data
consumption patterns. In addition, operators can utilize such
type of information to adjust the transmission power of the
base station during the off-peak hour to save energy [50].

Fig. 10 (a and b) shows the number of unique base stations
visited by users at each day and hour, respectively. This
shows the mobility of users per day while accessing cellular
networks. Observing the total distribution of the measurement
data, in most of the days, user mobility while accessing cellular
networks is relatively limited to certain locations. For instance,
in the median case, users visited not more than three different
unique base stations per day. We observe that ∼35.6% of
users visited more than one base station per day, of which,
15.4% users had only a single location change. On the other
hand, observing the daily and hourly change of base stations,
∼28.5% and ∼61.3% of the users, respectively, stay within
the coverage of a single base station. Users who visited more
than one base station per day have an average downlink speed
of 130.2 KBps. Users who stayed at the same base station
per day have an average downlink 133 KBps, which asserts
that stationary users have a chance to get higher download
speeds than movable users. Fig. 10 (c) shows the number
of unique base stations visited by mobile users in Finland
and its relation to the total downloaded bytes while accessing
cellular networks. We observe that although there are few
positively skewed distributions, majority of the mobile users
who download content from their devices are stationary users.

TABLE II: Device group used in FI based on market price

Device group Price range (e) # Users # Devices # Sessions

Low-end <=200 4748 112 6.2M
Mid-end 200 − 400 9316 147 11M
High-end > 400 1200 32 2.1M

Previous studies, such as [51], have designed an algorithm
to detect homes and working places using a dataset collected
from an MNO. Tagging user location as “home” and “work-
place” can also be achieved by observing frequent patterns of
users’ location and time of the day [14], [15]. Considering
the nature of our dataset, we follow a similar approach to tag
the location of mobile users as home and in the workplace.
For each user working location is the most frequently visited
address (base station) during the working hours. For each user,
“working” location is the most frequently visited address (base
station) during the working hours (9 AM to 4 PM). While,
“home” location is the most frequently visited base station
during the night time, as people would likely stay at their home
during off working hours. We consider only measurements
conducted at the stationary location. Accordingly, we found
that in the median case, users at home consume the highest
amount of data from their phone (51.7MB) than users at their
working place (40.2MB).

D. Device Model Types and OS Versions

We further ask whether the choice of the device model im-
pacts the data usage pattern of the users. Device manufacturers
set the market price based on the device specification and
their target user groups. However, the price of the devices
might vary in different markets and usually decline over time.
Knowing the release year of the devices to the market and their
market-price value can be an indicator to identify potential
user groups. By considering the device model, the OS version,
and the year of release of the devices, we study whether the
session length, the number of sessions, and the amount of data
transferred vary per device used by the users.

We began by grouping device models by their brand name.
Then, for every brand family, each specific model was mapped
to the year of release and average market-price of the device.
The device model, year of release and the average market-
price of each device was extracted using the GSMA arena [52]
service. Note that, the device model and the OS version of
devices have already been inferred programmatically during
the measurement. After filtering the dataset, we follow a
heuristic approach to determine the price range. We found
a total of 295 different device models in our measurement
dataset from Finland. As shown in Table II, we categorized
the device by price range. The table shows the number of users,
the number of sessions, and the number of device models
belonging to each category.

By considering the price range of the devices, we investigate
three different groups of devices and the corresponding total
downloaded bytes per user. We found that users with a high-
end device model consume data twice more than mid-end
and low-end device model users as shown in Fig. 11 (a).
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Fig. 11: Total downloaded bytes per user categorized by price
level (a), and price level per year of release of the devices (b)
and OS version name (c). The data consumption over high-end
device models is twice more than that of mid-end and low-end
device models.

(a) (b)

Fig. 12: Number of sessions created by user per Android OS
version for Samsung and Sony mobile phones. The color shows
the year of release of the devices to the market. Users with
recent device models have created more number of sessions.

The total downloaded bytes for high-end, mid-end, and low-
end devices in the median case is 50.3MB, 26.3MB, and
21.8MB, respectively. This is possibly explained by the type
of applications installed and the data usage behavior of the
user. For instance, users with a high-end device might tend to
use “heavy apps” that consume a lot of data. One reason for
this observation could be that the economic status of users
might allow them to have a good data subscription plan.
Besides, high-end devices usually have a larger screen size.
As a result, users might use their smartphone for most of their
daily activities on the Internet.

Fig. 12 shows the number of sessions created by users
per Android OS version type for Samsung and Sony models.
We observe that for Samsung models and under the same
Android OS version, users who own recently released devices
have more interaction with their smartphone than previously
released device models. For instance, for Android version
8.0, device models released in 2018 have created the highest
number of sessions compared with device models released in
2017 and 2016. The observation is consistent in most of the
OS versions for Samsung devices but not for Sony, except
for version 8.0. This inconsistency between the two devices
models could be related to the background traffic generated
by the device and the corresponding utilities.

We witness that the recent Android OS versions have
relatively smaller total downloaded bytes per user than older
OS versions. As shown in Fig. 13 (a), Oreo Android OS
version has total downloaded bytes of 167.7 MB per user.

(a) (b)

Fig. 13: Total downloaded bytes per user categorized by
Android OS version and year of release of the devices (LTE
network). New devices with the latest Android OS have rela-
tively less total downloaded bytes than similar device models
(based on year of release) but with older OS version.

Oreo1 was the recent Android OS release compared to the
other two versions in our measurement. On the other hand,
devices based on Nougat and Marshmallow versions in the
median case have 177.9 MB, 303.3 MB total download bytes,
respectively. A possible reason for the latest OS version to
have the least total downloaded bytes per user is that the OS
might come with an improved and an optimized mechanism
to avoid bulky downloads from the server for every content
the user requests. Similarly, new devices come with higher
memory size, storage capacity, and processing power. As a
result, some frequently accessed pieces of information can
be cached locally to minimize the size of the content to be
downloaded directly from the servers. This can be observed in
Fig. 13 (b), where latest devices (based on the year of release)
with the latest Android OS version have relatively smaller total
download bytes than older devices with the latest Android OS
version. For instance, devices released from 2016 to 2018 and
running Oreo version has smaller total downloaded bytes per
user than models released before the year 2016.

Takeaway – Mobile users in Finland prefer cellular net-
works over WiFi due to good network coverage and flat-
rate subscription prices. Stationary users and users at home
consume more data than users on the move and users
at work. Over the cellular network, data consumption in
Finland over weekdays appears similar to weekends, while
data consumption during weekends is relatively higher over
the WiFi networks. Users with high-end devices (based
on price range) have the highest total downloaded bytes
and users with recent devices (based on year of release)
have more interaction with their devices. High-end devices
with the latest Android OS version have smaller total
downloaded bytes than similar device models but with older
Android OS version. Such high-end devices come with an
improved hardware capacity to cache frequently accessed
content reducing bulky downloads whenever possible.

1Using the associated name of Android OS release versions, we map the
version number with the corresponding name based on the information [53].
Accordingly, release versions from 6.0 to 6.0.1 are known as Android
Marshmallow, and versions from 7.0 to 7.1 named as Android Nougat and
versions from 8.0 to Android 8.1 known as Android Oreo. There are other
Android versions in our measurement. However, we select these three versions
since we have more than 4M measurements for each of these OS versions.
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Fig. 14: The constrained speed (which is related to the
maximum network speed and created when the network is a
limiting factor) is higher than unconstrained speed (when the
network was not a limiting factor).

IV. NETWORK PERFORMANCE AND USER BEHAVIOR

In this section, we investigate the impact of network conges-
tion and performance such as throughput [54] and latency [55]
on mobile data usage patterns.

A. Network Congestion and Data Usage Patterns

The platform records constrained and unconstrained speeds
(see: §II for definitions) indicating presence of possible con-
gestion [56] and non-congested networks, respectively. If there
is a latency value recorded during the session, it is possible
to isolate the congestion events (if any). As such, we only
consider the sessions that have the latency data recorded.
Fig. 14 shows the average daily download speed per user when
they access the network with constrained and unconstrained
conditions over the LTE network in the Helsinki area. The
presence of constrained speed in a session is related to the
existence of congestion in the network. Note that the idea of
whether network congestion happened during measurement or
not is loosely defined. In this case, the network was a limiting
factor. Hence, the throughput demand of a given user is beyond
what the current network can offer. Unconstrained speeds
are all throughput values under normal network condition.
Constrained speed is always recorded for the highest peak bit-
rate, where the network is a limiting factor. As a result, the
average download speed recorded during constrained network
is always higher than the unconstrained network.

On the contrary, unconstrained speed is related to the
normal usage of mobile users without demanding more than or
closer to the maximum network speed. This is because users
often need lower download speed than what the network can
provide, and they usually get the speed they require from the
network (as shown in the blue line). For users accessing the
network with unconstrained speed, the base station was not
a limiting factor for poor user experience (if there is any).
However, the user might be limited by servers or by the
quality of the application in use. Users under the constrained
speed network (red in the plot) hit the maximum speed of
the network. This is because since such users are mostly
transmitting more data traffic, there is a high probability that
these users require more bandwidth than what the network can
provide. We also observe that the constrained download speed
(which indicates presence of congestion on the network) has
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Fig. 15: Number of congested sessions by stationary and
mobile users. Stationary users are more likely to access the
network under congestion than users on the move.

higher variance than the unconstrained download speed (when
users are not limited by the network).

For instance, the total downloaded bytes per user between
three major MNOs in Finland have a median difference from
0.4 MB to 1 MB. The one-way ANOVA (F-statistic = 71.35
and the p-value = 1.03e-31) confirms that there is an overall
significant difference among MNOs. The effect of MNOs on
the total download (under the same radio technology) can be
explained by the data subscription plan users have and the
available network coverage (i.e., how good the infrastructure of
a given MNO is). Since we do not have information regarding
the data subscription plan of the mobile users, inferring a
conclusion in this direction is difficult. We, therefore, study
how network availability and coverage impacts the number
of total downloaded bytes per user and the SLS values. Note
that, SLS is a measure for user satisfaction level when they
access the network (see: §V-C for more details). We notice
that the availability of network coverage (e.g., 4G network) at
different locations also varies by MNO. We observe that users
subscribed to a given MNO with higher 4G availability, have
higher SLS and total downloaded bytes than the MNOs with
lower 4G coverage (plot not shown). This indicates that users
subscribed to different network operators have different data
usage experience and traffic demand.

Fig. 15 (a) shows the downloaded bytes versus the number
of sessions with constrained speed per mobile user. The plot
depicts that the presence of constrained speed (with possible
congestion) limits the total downloaded bytes users could get,
irrespective of the number of times the users are interacting
with their device (the bottom of the x-axis). On the other hand,
as the number of sessions increase the maximum amount of
downloaded bytes are observed. This indicates that users are
hitting the maximum network speed as they aggressively use
the network. We also study the probability of users running
under congestion when they move around versus when they
are stationed at a single place during the measurement period.
We observe that stationary users access a mobile network
under congestion more than users on the move as shown in
Fig. 15 (b). This result is in-line with the high amount of
data consumption by stationary users (see: §III-C). In §V, we
present more detailed analysis on the impact of congestion on
the data usage pattern and its distribution by country.
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B. Network Throughput

We study whether throughput affects the total data con-
sumption (both download and upload) by taking the average
throughput per user. Fig. 16 shows the correlation between
total downloaded and uploaded bytes with download (a) and
upload (b) speeds, respectively. The values represent the me-
dian value per user. We observe that both the total downloaded
and uploaded bytes are positively correlated with download
and upload speeds, respectively. For instance, evaluating the
Pearson and Spearman correlation coefficient, the total down-
load consumption per user and downloading speed (Pearson
r=0.43, Spearman r=0.9 with p-value=0.0) and the total upload
consumption per user and uploading speed (Pearson r = 0.66,
Spearman r=0.8 with p-value=0.0) are strongly correlated. This
indicates that network throughput contributes to higher data
consumption trends, especially for countries such as Finland,
where unlimited data plan subscription is widely adopted [38].
We also observe that the median throughput has a slightly
positive relationship with the number of sessions created per
user (Spearman r = 0.13, p-value = 1.48e-82), but does not
have a meaningful relationship with the session duration.

Takeaway – The network throughput has a strong corre-
lation with total downloaded bytes. Throughput is weakly
correlated with the number of sessions created per user but
has no meaningful relationship with the session duration.
Stationary users have more probability of experiencing
congestion in the network than users on the move. The
constrained speed which is the maximum network speed
recorded when the network was a limiting factor indicates
possible presence of congestion. Such a condition indicates
that users need more throughput than what the network
can provide. When the network is constrained, the highest
download speeds are recorded. However, as the mobile
network is a limiting factor, the total downloaded bytes
is limited to a certain extent, even if the users were able to
reach the maximum network speed. This is because down-
loading with the highest download speed might sustain only
for a short period of time.

V. MOBILE DATA USAGE PATTERNS ACROSS COUNTRIES

We further investigate the data usage patterns of geograph-
ically diverse mobile users across six countries: Finland (FI),
Germany (DE), the United Kingdom (UK), Japan (JP), Brazil
(BR), and India (IN). These countries are selected based
on the geographical difference and the sufficient amount of
measurement data collected from each country, as shown in
Table I. Note that our focus is on highlighting similarities and
differences in data usage and the traffic demand of mobile
users in these six countries.

A. Session and Data Volume

Fig. 17 shows the distribution of download consumption
per user over cellular and WiFi networks across the six
countries. We observe that, except for users in Finland, mobile
users in the other countries prefer WiFi networks for both
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Fig. 16: The relationships between download speed with the
total download (a); and the median upload speed with the
total upload bytes per user (b).
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Fig. 17: Total downloaded bytes per mobile users over WiFi
and cellular networks in six countries. Mobile users (except
in FI) prefer using WiFi for downloading content.

uploading to (the plot not shown) and downloading content
from the Internet. Moreover, we observe that the average daily
download (unconstrained) speeds over cellular networks vary
per country. For instance, in Japan, the average daily download
speed over cellular is 5.6 Mbps, while in Finland it is ∼8
Mbps. This indicates that mobile users in Finland mostly use
heavy applications that demand high data traffic than mobile
users in Japan. The flat-rate based data subscription plan in
Finland (see: §III) could be one of the factors for users to use
cellular networks for most of their activities on the Internet.
The average daily download speed over cellular in the UK, BR,
and IN are 6.3 Mbps, 4.2 Mbps, and 4.0 Mbps, respectively.

We observe that the overall download consumption of users
per country in the six countries (irrespective of whether users
access cellular or WiFi networks) has a similar pattern. This
indicates that mobile users in different countries mostly access
the Internet from their devices in a similar fashion. However,
in terms of the network technology type mobile users prefer to
access the Internet on their device varies across countries. This
might be due to different reasons such as network coverage
and market price of subscription.

B. Ratio of Using WiFi and Cellular Networks

We also study the trend of mobile users on accessing content
from cellular or WiFi networks over the time of the day in the
aforementioned countries. To this end, we only focus on the
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Fig. 18: Median of hourly total download bytes per user
between cellular and WiFi networks over the time of the day
in six countries. Note the scale difference on Y-axis.

set of users that have been accessing both cellular and WiFi
networks during the measurement period. For every user, we
calculated the total download bytes transferred over cellular
and WiFi networks over the time of a day. Fig. 18 shows the
trend of total download bytes per user at every hour during the
month in the six countries. The trend of downloading content
over WiFi and cellular network follows similar patterns. We
observe that except for Japan, mobile users in other five
countries follow relatively similar patterns. For instance, there
is an increasing trend for downloading traffic volume during
the evening hours (typically 16:00 to 20:00). In the afternoons,
the number of users who start downloading content over WiFi
increase more than the number of users downloading over
cellular networks (e.g., in the UK and Germany, after 16:00).
This might indicate that when users are at home or off-work
time they prefer accessing Internet over WiFi. It might also
indicate that users start accessing heavy traffic demanding apps
over WiFi during that period. For instance, for the mobile
user in Germany, hourly total download bytes per user over
cellular and WiFi networks at 4:00 AM is 24 MB and 158
MB, respectively. Observing at 20:00 hours, it has 58 MB
over cellular and 277 MB over the WiFi networks.

C. Network Congestion and Service Level Score (SLS)

We study how the network coverage, especially the avail-
ability of the 4G network varies across different countries and
how this aspect is associated with the service satisfaction level
(i.e., SLS) of mobile users. Mobile users in Japan rank highest
by reporting access to the 4G network in more than 97% of
measurement samples. While, mobile users in Finland access
the 4G network 83.4% of the time with users in India reporting
4G access in 72% of the measurement samples.

The measurement platform identifies whether the created
sessions were constrained (see: §IV-A) in the mobile network.
The network can be a bottleneck due to several reasons.
For one, the session can be constrained in situations where
congestion occurs at the base station. We study the number

of such constrained sessions created by users per country.
For instance, in India, ∼22% of the user sessions were under
constrained conditions, while in Japan only ∼9.4% of the
sessions were created as constrained sessions.

We consider the UK and Finland users as a sample to com-
pare the detailed distribution of different radio technologies. In
the UK, about 75% of the cellular data sessions were accessed
over the LTE network and about 9.5% over HSPA+ networks.
Other network technologies also take a share with High
Speed Uplink Packet Access (HSUPA) 5.2%, IWLAN (3.3%),
HSPA(3.3%), EDGE (1.4%). Note that multiple measurement
sessions can be collected from a single user who accessed the
LTE network. As a result, the highest percentage value per
session of the LTE network does not directly reflect the number
of users accessing the LTE network. Considering the unique
number of users accessing the LTE and 3G networks, users
accessing the 3G networks were higher than users accessing
the LTE networks (about 3% difference). This implies that
users in the UK have more frequently connected to 3G
networks than the LTE networks. However, we also find that
users accessing the LTE networks consume higher median and
the total downloaded bytes.

While in Finland, about 80% of the sessions created by
the users were over the LTE network. About 16% of the
sessions were over the HSPA+ radio network. The rest were
over HSUPA (1.6%), ∼1% over HSPA, and only 0.3% over
the EDGE network. In Finland, the number of sessions and
the number of users accessing the LTE network is higher than
that of users accessing the 3G network.

Service Level Score (SLS) – SLS measures user satisfac-
tion level based on the number of times that the users have got
what they ask from the network. It is the ratio of the difference
between the number of unconstrained and constrained sessions
to the number of unconstrained sessions, for every user, as
shown in Eq. 1; where α is the number of unconstrained
sessions and β is the number of constrained sessions.

SLS =
α − β

α
× 100 (1)

Based on user activity and application type, some times of
the day tend to be more active in traffic flow than others. We
observe the temporal traffic dynamics and the service level
score of mobile users by time of the day. Fig. 19 shows
the hourly SLS values in a cellular network across the six
countries. The box plot in black shows the distribution of SLS
over the time of a day for the whole dataset. The orange lines
are median values per user for every hour. We observe that
SLS values start to deteriorate during peak (e.g., starting from
4:00) hours of the day.

We also study the daily distribution of the SLS score per
user across six countries. Fig. 20 depicts the daily distribution
of SLS score per mobile users across the six countries. It can
be seen that the daily average SLS score for each country is
FI (66.52%), UK (75.75%), JP (76.78%), DE (74.22%), IN
(54.73%), and BR (67.74%). Considering the daily median
SLS value for every user, we found that mobile users in the
UK have the highest SLS score (90%), while mobile users in
India have the lowest SLS score (62%). Mobile users in the
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Fig. 19: SLS distribution over time of the day in six countries.
Note, the higher the percentage, the better the SLS score. The
SLS score in most of the countries follows a diurnal pattern
where poor SLS scores are observed during peak times.

Germany and Japan have median SLS score of 87% and 84%
per user per day, respectively. On the other hand mobile users
in Brazil and India have relatively lower SLS score, 71% and
62%, respectively. Relatively, the daily median SLS score per
user in Finland (FI) is also low (79%). This is because mobile
users in Finland use the cellular network on their devices a lot
for most of their Internet activities as shown in Fig. 17. On
the other hand, mobile users in the UK and Germany (DE)
have high SLS score since they might avoid consuming a lot
of data over cellular networks. Note that, we understand that
SLS can not be used as a universal metric for representing
the Key Performance Indicators (KPIs) for various mobile
applications and services. However, it can serve as a good
first-hand approximation of the satisfaction level of mobile
users as SLS takes into consideration the speed of the mobile
network and its constraints and bottlenecks.

Takeaway – Most mobile users in the countries we have
studied consume the highest data volume over WiFi net-
works than over cellular networks. Mobile users in Finland
are an exception consuming the highest data volume over
cellular networks instead. Mobile users in Finland also
exhibit lower Service Level Score (SLS) than users in
some other countries such as the UK and Germany. This
indicates that the SLS score can be higher when mobile
users are conservative on cellular data usage (e.g., if their
subscription plan is priced per data usage). The availability
of good network coverage and flat-rate market price are
some of the reasons for mobile users to prefer using cellular
over WiFi or vice versa. We also observe that the total data
consumption across the countries (considering both cellular
and WiFi networks together) of mobile users is comparable.
This indicates that mobile users across countries have a
similar trend of data usage, although there is a difference
in network technology that is available for access.
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Fig. 20: CDF of SLS values in cellular network for six
countries. Mobile users in UK have higher SLS score.

VI. RELATED WORK

There are several studies on data usage patterns and behav-
ior of mobile users (see [57] for a recent survey) whereby the
studies can generally be grouped into the following areas –

Mobility and location related patterns – Paul et al. [58],
study the pattern of mobility and temporal activity as well as
how the radio resources are utilized by different applications
using a dataset collected at the core of a 3G network. The
authors show that the distribution of traffic consumption across
subscribers is uneven, such that 90% of traffic loads in the 3G
network is generated by 10% of the subscribers. Similarly,
Yang et al. [59], characterize behavior of mobile users in
terms of mobility patterns, application usage based on the data
collected at 2G and 3G core networks in China. They show
that about 1% of users frequently use different applications
and consume the highest data volume. They also indicate that
the user mobility per day is limited to a few unique (not more
than 10) cells of base stations. Other studies such as [60], [61],
and [62] investigate human mobility and behavior in mobile
networks using measurements. These studies show that user
mobility exhibits patterns over time of the day and location.

Application usage patterns – Previous work [63], [64]
has studied mobile application usage behavior by considering
different application activities (e.g., installing, uninstalling,
and updating) and network usage. Yu et al. [25] show that
application usage behavior of users and dynamics at a given
location can be predicted by using the point of interest (POI)
information of that location. Authors in [65], [24] study
application usage pattern of smartphone users and distinguish
different groups of mobile users. Canneyt et al. [66] study ap-
plication usage behavior of users by investigating engagement
patterns of users with their applications. They use a dataset
collected using Flurry [67]. The authors show that users
application usage activity and disruption patterns are correlated
with major events such as sports and political events.

Several other studies [68], [69], [70], [10] have focussed
on mobile application usage behavior and retention patterns.
Silva et al. [10] study mobile application usage patterns using
an year-long dataset collected from devices of mobile users
in Brazil. They investigate mobile application usage patterns
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in terms of temporal and location differences. They show that
social networking applications such as Facebook and What-
sApp have the highest data exchange. The authors propose a
model that predicts the next application based on synthetically
generated datasets of mobile application usage. Wu et al. [70]
study application usage of mobile users in combination with
the temporal patterns and identified six group of users. The
authors also propose a model (based on Wavelet-ARMA)
that predicts the traffic demand of mobile users for different
applications. Ben-Gal et al. [69] study mobility patterns of
users and propose a clustering model that identifies group of
users with a “shared lifestyle” irrespective of their location.

Patterns based on traffic size and flows – Oliveira et
al. [21] study and characterize data traffic and usage behavior
of mobile users based on a dataset collected from a 3G
network in Mexico. The authors profile mobile users into three
classes (light, medium, and heavy users) by using the number
of sessions, traffic volume, and inter-arrival times. Zhang et
al. [39] study the characteristics of cellular data based on
HTTP-based traffic traces collected from cellular and fixed-
line networks. They investigate different applications using
packet, flow and session level traffic metrics in comparison
with cellular and fixed-line networks. They show that cellu-
lar networks have multiple short flows [55] than fixed-line
networks. The authors cluster different applications based on
similarity patterns on the traffic metrics (flow and session size,
and inter-packet gap). They show that the inter-packet gap
between different applications have significant variations and
suggest application-specific optimization methods.

Device access patterns and device model types – Shafiq et
al. [2] model traffic dynamics on mobile devices using a
week-long trace collected from the core network of a cellular
operator. They study traffic dynamics and characteristics of
applications on three different mobile device brand families.
They show that the type of device attributes to different
traffic behavior. Falaki et al. [26] studied traffic generated
from 255 mobile users along with the interaction with their
smartphones. The authors show that user interaction with the
device contributes to a higher battery consumption.

Compared to related work, the data usage pattern and
behavior of mobile users is not explored very well. This is
because previous analysis on data usage patterns of mobile
users is either limited to one city or country [21]; considers
limited sample of users [26]; is based on data from a single
cellular core operator and area [71] or focusses on specific
application types [72]. Unlike the previous studies, our work
instead focuses on an extensive analysis of data usage pattern
and behavior analysis of mobile users based on ∼340M records
(measurement sessions) collected from the end-user devices.
The dataset covers vast geography of users encompassing six
countries. We consider several essential features that determine
data usage patterns of mobile users. Some of the features
we studied include device models, geographical location of
users, application categories installed on mobile device, and
the impact of different subscription markets on the data
consumption of mobile users.

VII. CONCLUSION

We presented an analysis of data usage patterns and behav-
ior of mobile users. To this end, we used a month-long dataset
with more than 340 million measurement sessions (recorded in
July 2018) from six countries. We investigated the behavioral
pattern of mobile users by considering different factors such as
time of the day, user mobility, location, and the frequency of
users accessing the data traffic over cellular or WiFi network.
We also studied how data usage patterns and the Service Level
Score (SLS) of mobile users varies across the six countries.

We showed that data usage patterns of mobile users are
correlated with multiple factors. The factors include user
mobility, the accessed network type (cellular and WiFi), the
choice of the device model, the type of radio technology
(such as 3G and 4G), and user mobility. We showed that
mobile users at a stationary position consume higher volumes
of data than users on the move. Furthermore, pricing strategy
of Mobile Network Operators (MNOs) and the availability of
good network coverage can shape the data usage behavior of
mobile users. Especially which network type (cellular or WiFi)
users prefer to access the Internet using their mobile device is
often subject to their data subscription plans. We showed that
mobile users in Finland tend to use heavier applications over
a cellular network than in the rest of the countries we studied
as flat-rate pricing is dominant in Finland.

To further encourage reproducibility of our results, the
measurement dataset and scripts used in the analysis are made
publicly available [29].
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