
NFQL: A Tool for Querying Network Flow Records

Vaibhav Bajpai, Johannes Schauer, Jürgen Schönwälder
Computer Science, Jacobs University Bremen, Germany

{v.bajpai, j.schauer, j.schoenwaelder}@jacobs-university.de

Abstract—Cisco’s NetFlow protocol and IETF’s IPFIX open
standard are the widely deployed techniques for collecting net-
work flow statistics. Understanding certain patterns in these
network statistics requires sophisticated flow analysis tools that
can efficiently mine flow records. We recently proposed Network
Flow Query Language (NFQL) that can process flow records,
aggregate them into groups, apply absolute or relative filters,
and invoke Allen interval algebra rules to merge group records.
In this paper, we introduce an efficient implementation of the
query language. It has been evaluated by a suite of benchmarks
against contemporary flow-processing tools.

I. INTRODUCTION

NetFlow and Internet Protocol Flow Information Export
(IPFIX) are the two popular protocols for IP flow informa-
tion export. NetFlow [1] is a network protocol designed by
Cisco Systems, which allows routers to generate and export
flow records to a designated collector. IPFIX [2] is an open
standard defined by the IETF based on NetFlow v9. The wide
applicability of this approach is easily seen from the pervasive
use of flow records for a set of different network analysis
applications. For instance, a survey by Sperotto et al. [3] gives
an overview of how network flow analysis can be used to
detect intrusion attacks. In addition, a survey by Callado et
al. [4] lists behaviour analysis of Internet backbone traffic and
general anomaly detection.

Understanding intricate traffic patterns require sophisti-
cated flow analysis tools that can mine flow records for such
a usage. Unfortunately current tools fail to deliver owing to
their language design and simplistic filtering methods. We
recently proposed a flow query language design [5] that aims
to cater to such needs. It can process flow records, aggregate
them into groups, apply absolute or relative filters and invoke
Allen interval algebra rules [6] to merge group records. The
expressiveness of the language can be seen from [7] where the
authors formulate flow queries to identify flow signatures of
popular applications.

Flowy [8] was a first feature complete Python prototype
of NFQL. Due to performance problems, its execution engine
was rewritten in C, called Flowy 2.0 [9]. In this paper, we
introduce nfql, which extends Flowy 2.0, making it more
feature complete and optimizing its execution engine with
crispier algorithms. We show that this iteration of our work
is able to scale to real-world sized traces and has comparable
execution times to contemporary flow analysis tools.

The paper is organized as follows. In Section II we survey
the current state-of-the-art of flow-processing tools and we
reason how nfql is different from each one of them. In Section
III we describe the flow query language by discussing each
stage of the processing pipeline. In Section IV we provide
an overview of the nfql architecture and we describe the

workflow of the execution engine. A performance evaluations
comparing nfql against contemporary flow processing tools
alongwith with a discussion on its current limitation and future
outlook is in section V. We conclude the paper in Section VI.

II. RELATED WORK

In recent years, a number of tools have been developed
that can capture the traffic as flow records and use them for
network analysis. Simple analysis of network traffic can be
done by a range of graphical utilities like ntop [10], FlowScan
[11], NfSen [12] and Stager [13]. All these tools understand
the NetFlow format while ntop and Stager can also process
IPFIX. flow-tools and nfdump are among the most popular
tools used for analyzing NetFlow data. flow-tools [14] is
a suite of programs for capturing and processing NetFlow v5
flow records. It consists of 24 separate tools that work together
by connecting them via UNIX pipes. It can capture, read, filter,
and print flow records internally saved in a fixed-size format.
nfdump [12] is a very similar tool that uses a different storage
format. The power of filtering rules in both the tools is however
mostly limited to absolute comparisons of flow attributes. As a
result, relative comparison amongst different flows or querying
a timing relationship among them is not possible.

SiLK [15] is a network traffic collection and analysis tool
that comes quite close to providing similar capabilities as
NFQL and is therefore used as a reference point to compare
the performance of the nfql execution engine. The design
and implementation of SiLK, however, differs a lot from
that of nfql. For instance, in SiLK there are separate tools
to perform the task of each stage of the NFQL processing
pipeline. The stage functionality is not full-fledged though.
The grouping and merging operations can only be performed
using an equality operator. This restriction allows the tool to
perform optimization such as using hash tables to perform
lookups. NFQL on the other hand, provides a much richer set
of comparisons operations, such as equal, not equal, greater
than, less than, greater or equal, less or equal. There are also
stringent requirements in SiLK on how the flow-data needs to
be organized before it can be piped into a tool. The grouping
tool, for instance, assumes that the to-be supplied input flow
data is already sorted on the field column. These requirements
can make it a little cumbersome to design a full-fledged flow
query. For instance, trying to mimic a NFQL query in SiLK
sometimes ends up as a shell script with over a dozen of SiLK
tools piped together.

III. FLOW QUERY LANGUAGE

The flow query language consists of a number of inde-
pendent stages that are connected to one another to form a
processing pipeline as shown in Fig. 1. A complete description

Design of a Stream-Based IP Flow Record Query Language 19

of an initial record (a query) followed by one or more responses. Its most basic
use is to group records into both sides of a bidirectional session, such as a HTTP
request.

3 Stream-Based Flow Query Language

Our framework for IP flow filtering follows a stream-oriented approach — it
consists of a number of processing elements or operators, which are connected
with each other via pipes. Each element receives an input stream, performs some
sort of operation on it (filtering, aggregation etc.) and the output stream is piped
to the next element. Figure 1 shows the framework and in the following sections
we describe each of its elements. A complete definition of the syntax and the
semantics of the elements can be found in [19]. Section 4 provides an example
illustrating the usage of the primitives of the stream-based flow query language.
The names of the filtering primitives in our language are closely linked to the
flow record attributes in RFC 5102 [18].

Fig. 1. IP flow filtering framework

3.1 Splitter

The splitter is the simplest operator in the IP flow filtering framework. It
takes the input stream of flow records and copies them on each output stream
without performing any changes on them. There is one input branch and several
output branches for a splitter.

3.2 Filter

The filter operator takes a stream of flow records as input and copies to its
output stream only the flow records that match the filtering rules. The flow
records, which do not match the filtering rules are dropped. The filter op-
erator performs absolute filtering, it compares the flow attributes of the input

Execution Engine

Front-End Parser

JSON

Output Trace

nfql

NFQL Query

Input Trace

Fig. 1. NFQL Processing Pipeline [5] (left) and nfql Architecture (right)

of the semantics of each pipeline stage can be found in [5].
The pipeline starts with the splitter. It takes the flow-records
data as input in flow-tools compatible format. The splitter is
responsible to duplicate the input data out to several branches
without any processing whatsoever. This allows each of the
branches to receive an identical copy of the flow data to process
it independently.

The filter is the first processing stage of a branch in
the pipeline. It performs absolute filtering on the input flow-
records data. The flow-records that pass the filtering criterion
are forwarded to the grouper, the rest of the flow-records are
dropped. The filter compares separate fields of a flow-record
against either a constant value or a value on a different field
of the same flow-record. The grouper performs aggregation
of the input flow-records. The grouping terms can be either
absolute or relative. The newly formed groups, which are
passed on to the group filter, can also contain meta-information
about the flow-records contained within the group using the
aggregate clause defined as part of the grouper query. The
possible aggregation operations are static, count, product,
sum, logical and/or/xor, arithmetic mean, standard deviation,
union, median, minimum and maximum. The group-filter is
the last processing stage of a branch. It performs absolute
filtering on group-records. The group-records that pass the
filtering criterion are forwarded to the merger, the rest of the
group-records are dropped. The group-filter compares separate
fields (or aggregated fields) of a group-record against either a
constant value or a value on a different field of the same group-
record. The merger performs relative filtering on the N-tuples
of groups formed from the N stream of groups passed on from
the group-filter as input. The relative filtering on the groups
are applied to express timing and concurrency constraints using
Allen interval algebra [6]. The ungrouper is the final processing
stage. It unwraps the tuples of group-records into individual
flow-records, ordered by their timestamps. Any duplicate flow-
records appearing from several group-records are eliminated.

IV. IMPLEMENTATION

The nfql architecture primarily consists of a front-end
parser backed up by an execution engine as shown in Fig. 1.
The execution engine is the brain of nfql where the complete

pipeline is processed. It receives the flow query at runtime
using a JSON [16] intermediate format. The execution engine
is written in C, however the front-end parser can be written in
any desired language.

A. Flow Query Intermediate Format

Each stage of the pipeline is expressed in the JSON query
as a Disjunctive Normal Form (DNF) expression. The elements
of the conjuctive clauses are terms. json-c [17] is used to
parse the flow query file. The mapping of the query to the
structs defined in the execution engine is not trivial. When
reading the JSON query at runtime, the field names of a
NetFlow v5 record are read in as strings. Utility functions are
defined that map the field names to internal struct offsets and
the field types and the operations to internal enum members.

The abstract objects that store the JSON query and the
results that incubate from each stage are designed to be self-
descriptive and hierarchically chainable. The complete JSON
query information for instance, is held within the flowquery
struct as shown in Listing 1. Each individual branch of the
flowquery itself is described in a branch struct.

1 struct flowquery {
2 size_t num_branches;
3 size_t num_merger_clauses;
4
5 struct branch ** branchset;
6 struct merger_clause ** merger_clauseset;
7 struct merger_result* merger_result;
8 struct ungrouper_result* ungrouper_result;
9 };
10
11 struct branch {
12 int branch_id;
13 struct ftio* ftio_out;
14 struct ft_data* data;
15
16 size_t num_filter_clauses;
17 size_t num_grouper_clauses;
18 size_t num_aggr_clause_terms;
19 size_t num_groupfilter_clauses;
20
21 struct filter_clause ** filter_clauseset;
22 struct grouper_clause ** grouper_clauseset;
23 struct aggr_term ** aggr_clause_termset;
24 struct groupfilter_clause ** groupfilter_clauseset;
25
26 struct filter_result* filter_result;
27 struct grouper_result* grouper_result;
28 struct groupfilter_result* gfilter_result;
29 };

Listing 1. Flow Query and Branch Structs

The JSON query can also disable the stages at runtime.
This means that one only has to supply the constructs that

one wishes to use. The constructs that are not defined in the
JSON query are inferred by the execution engine as a disable
request. The execution engine uses disable flags that are turned
on when the query is parsed. These flags are used throughout
the engine to only enable the requested functionality.

B. Execution Workflow

A custom C library has been written to directly read/write
data stored in flow-tools format. The library sequentially
reads the flow-records into memory to support random access
required for relative filtering. Each flow-record is stored in a
char array and the offsets to each field are stored in separate
structs as shown in Listing 2. The array of such records are
indexed allowing fast retrieval in O(1) time.

1 struct ft_data {
2 int fd;
3 struct ftio io;
4 struct fts3rec_offsets offsets;
5 struct ftver version;
6 u_int64_t xfield;
7 int rec_size;
8 char** recordset;
9 size_t num_records;

10 };

Listing 2. Trace Data Struct

In order to be able to make comparisons on the field
offsets of a term, the comparator needs to know the type
of the comparison and the length of the field offset. This
information is parsed by execution engine once the query is
read and is therefore not available at compile time. In order
to subvert the need to define complex branching statements, a
dedicated comparator is defined for every possible field length
and comparison operation. A Python script generates C source
code for these comparators at compile time conforming to the
structure shown in Listing 3. This allows the term definitions
to make runtime calls using a function name derived from the
combination of operation type and field length.

1 struct filter_term {
2 size_t field_offset;
3 uint64_t value;
4 uint64_t delta;
5 struct filter_op* op;
6 bool (*func)(
7 const char* const record ,
8 size_t field_offset ,
9 uint64_t value ,

10 uint64_t delta
11);
12 };

Listing 3. Filter Term Struct

1) Splitter: nfql uses identifiers to reference a flow record
in the char array. This eliminated the need to copy all the flow-
records when moving ahead in the pipeline. As a result, there
is no dedicated splitter stage in the execution engine. Each
branch references the flow records from a common memory
location. This helps keep the memory costs at a minimum
when multiple branches are involved.

2) Filter: The execution engine, as defined by the flow
query language must read all the flow records of a supplied
trace into memory before starting the processing pipeline.
Since, the filter stage uses the supplied set of absolute rules
to make a decision on whether or not to keep a flow record;
it has to pass through the whole in-memory recordset again
to produce the filter results. This technique involves multiple
linear runs on the trace and therefore slows down when the
ratio of number of filtered records to the total number of

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

T
i
m
e

(
s
e
c
s
)

Output Flows/Input Flows

Filter Stage

flowy 2.0
nfql

Fig. 2. Filter Stage: Flowy 2.0 vs nfql

flow-records is high. We optimized this behavior in nfql by
merging the filter stage with in-memory read of the trace.
This means, a decision on whether or not to make room for
a record in memory and eventually hold a pointer for it in
filter results is done upfront as soon as the record is read
from the trace. In addition, if a request to write the filter
stage results to a flow-tools file has been made, the writes
are also made as soon the filter stage decision is available,
thereby allowing reading-filtering-writing to happen in O(n)
time, where n is the number of records in the trace. We used
the publicly available Trace 7 from the SimpleWeb [18] to
compare the performance of nfql against the one defined by
the flow query language as shown in Fig. 2. The filter stage
implementation with these optimizations runs 10 times faster
and is more pronounced on higher ratios.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
i
m
e

(
s
e
c
s
)

Output Flows/Input Flows

Grouper Stage

nfql (generic)
nfql (specific)

Fig. 3. Grouper Stage: nfql (Generic) vs nfql (Specific)

3) Grouper: In order to be able to make relative com-
parisons on field offsets, a simple approach is to linearly
walk through each filtered record against the filtered recordset
leading to a complexity of O(n2), where n is the number of
filtered records. A smarter approach is to put the copy in a
hash table and then try to map each pointer while walking
down the filtered recordset once, leading to a complexity of
O(n). The hash table approach however, will only work on
equality comparisons. A better approach, as implemented in
nfql is to sort the filtered recordset on the field offsets of

all the requested grouping terms of a clause. This helps the
execution engine perform a nested binary search to reduce the
linear pass to a fairly small filtered recordset. This helps the
grouper perform faster search lookups to find records that must
group together in O(n ∗ lg(k)) time with a preprocessing step
taking O(p ∗ n ∗ lg(n)) in the average case, where n is the
number of filtered records, p is the number of grouping terms
in a clause and k is the number of unique filtered records.
The grouping approach has further been optimized when the
filtered records are grouped for equality. In such a scenario,
the need to search for unique records and a subsequent binary
search goes away. The groups can now be formed in O(n) time
with the same preprocessing step taking O(p ∗n ∗ lg(n)). The
performance evaluation of the grouper handling this special
case against when handling generic cases is shown in Fig. 3.

The resultant group records are a conglomeration of multi-
ple flow records with some common characteristics. Some of
the non-common characteristics can also be aggregated into a
single value using group aggregations as defined in the query.
Such an aggregated group record is again mapped to a NetFlow
v5 record template. This allows the aggregated group records
to be written to a file as a representative of all its members.

4) Group Filter: The groupfilter stage is used to filter
the groups based on some absolute rules defined in a DNF
expression. The struct term holds information about the flow
record offset, the value being compared to and the operator
which maps to a unique enum value. This enum value is used
to map the operation to a specific group-filter function.

5) Merger: The merger is used to relate groups from
different branches according to a merging criterion. The imple-
mentation is not trivial since the number of branches that need
to be spawned is read from the query and is not known until
runtime. As a result, an iterator that can provide all possible
permutations of m−tuple (where m is the number of branches)
group record IDs was implemented. The result of the iterator
is then be used to make a match.

The merger as formulated in the flow query language needs
to match each group record from one branch with every other
record of each branch. This leads to a complexity of O(gm)
where g is the number of filtered group records and m is
the number of branches. The possible number of tries when
matching group records, however, can be reduced by sorting
the group records on the field offsets used for a match. nfql
optimizes the merger to skip over iterator permutations when a
state of a current field offset value may not allow any further
match beyond the index in the current branch. For such an
optimization to work, the filtered group records must be sorted
in the order of field offsets specified in the merger clause.
Specifying the filtered group records in any other order may
lead to undefined behavior. This means, that if the same field
offsets were used in the grouper stage, the terms in the grouper
clause can be rearranged by the query designer to align with
the order of terms in the merger clause.

The flow query language also bases the merger matches
on the notion of matched tuples. This means that a filtered
group record can be written to a file multiple times if it
is part of multiple matched tuples. This situation worsens
when different branches have similar filtered groups records.
Since, the function of the merger is to find a match of groups

records across branches based on a predefined condition, all
the group records across branches that satisfy the condition can
be clubbed into one collection instead of separate tuples. All
the group records within a collection can then be written to the
file. This eliminates the inherent redundancy and significantly
improves the merger performance.

6) Ungrouper: The approach of clubbing the merged group
records into a collection incurs a reimplementation of the
ungrouper. The ungrouper, as a result accepts a collection of
matched filtered group records as input. It then iterates over
each collection to unfold it groups and write their flow record
members to files.

C. Performance Optimizations

There can be a situation where the query designer may
incorrectly ask for aggregation on a field already specified
in a grouper (or filter) clause. If the relative operator is an
equality comparison, the aggregation on such a field becomes
less useful, since the members of the grouped record will
always have the same value for that field. nfql realizes this
redundant request and ignores such aggregations.

nfql has dedicated comparator functions for each type of
operation and the type of the field offset it operates upon. It is
not guaranteed that given the type of the query and trace, the
program will eventually go through each stage of the pipeline.
It is also possible that the program exits before, because there
is nothing more for the next stage to compute. The function
pointers are therefore set as late as possible and are called from
their respective stages just before the comparison is needed.

Each stage of the processing pipeline is dependent on the
result of the previous one. As a result, the stages should only
proceed, when the previous returned results. Implementing
such a response was straightforward for the grouper and group
filter, the merger although was a little trickier. The merger
stage proceeds only when every branch has non-zero filtered
groups. The iterator initializer deallocates and returns NULL if
any one branch has 0 filtered groups. Consequently a check is
performed in the merger to make sure iter is not NULL.

The flow-records echoed to the standard output can also be
written as flow-tools files. In fact, results from each stage of
the pipeline can be written to separate files with the increase
in the verbosity level. This leads to additional loops over the
resultsets if the writes are made at the end of the processing
pipeline. The execution engine therefore writes each result
record to a file as soon as it is seen by the pipeline stage.

D. Adaptable Compression Levels

The engine uses the zlib [19] software library to compress
the results written to the flow-tools files. zlib supports 9
compression levels with 9 being the highest. nfql allows the
user to supply its desired choice of the compression level. A
default level of 5 is used for writes if a choice is not indicated.
Fig. 4 shows the time taken to write a sample of records
passing the filter stage for each z-level. It goes to show
that each level adds its own performance overhead and must
be used with discretion. It is also important to note that other
tools may use different compression algorithms. nfdump for

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8 9

T
i
m
e

(
s
e
c
s
)

z-level

z-level

Fig. 4. z-level Effect on Performance

instance, uses lzo [20] compression to trade space for faster
compression and decompression.

V. PERFORMANCE EVALUATION

We used the first 20M records from the publically avail-
able Trace 7 from the SimpleWeb [18] repository for our
performance evaluations. The input trace was compressed at
ZLIB_LEVEL 5 using the zlib suite. It was also converted
to nfdump and SiLK compatible formats keeping the same
compression level. The suite was run on a machine with 24
cores of 2.5 GHz clock speed and 18 GiB of memory.

The first set of queries stress the filter stage. We use varying
values on the packet field offset to control the amount of
flow records that are passed by the filter. The resultant filtered
records are written as flow-tools files and compressed at
ZLIB_LEVEL 5. The ratio of the number of filtered records in
the output trace to the number of the flow records in the input
trace is plotted against time. The results are shown in Fig. 5.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

T
i
m
e

(
s
e
c
s
)

Output Flows/Input Flows

Filter Stage

nfql engine
flow-tools

nfdump
silk

Fig. 5. Filter Stage: nfql vs SiLK, flow-tools, nfdump

It can be seen that the performance of the filter stage
in nfql is comparable to that of flow-tools and SiLK.
SiLK takes less time on lower ratios, but then SilK and
nfdump also use their own file format. nfdump appears to be
significantly faster than the rest. This is because nfdump uses

the lzo compression scheme. It goes to show that adding lzo
compression will likely improve nfql’s filter performance.
Note that all the tools were single-threaded in this evaluation,
and did not completely utilize the 24 available cores.

The second set of queries stress the grouper stage. We
reuse the filter query that produces a 1.0 ratio to allow the
grouper to receive the entire trace as a filtered recordset.
The grouper part of the query then gradually increases the
number of grouping terms in the DNF expression to increase
the output/input ratio. The resultant groups are again written
as flow-tools files using the same zlib compression level.
The ratio of the number of groups formed to the number of
the input filtered records is plotted against time. nfdump and
flow-tools do not support grouping, and therefore are not
considered in this evaluation. The results are shown in Fig. 6.

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
i
m
e

(
s
e
c
s
)

Output Flows/Input Flows

Grouper Stage

nfql
silk

Fig. 6. Grouper Stage: nfql vs SiLK

The evaluation graph reveals that the time taken by the
tools are comparable on lower ratios, but on higher ratios,
nfql starts to drift apart. Since most of the time is taken
in writing the records to files, it is unclear whether SiLK’s
usage of its own file format is responsible for the drift. SiLK’s
rwgroup tool is also supplied a --summarize flag to force
it to write only the first record of each group, to make both
tools write the same number of records. This gives SiLK the
leverage to not store information about which members are
part of the group. nfql on the other hand needs to allocate
resources (which may take time) to keep this information in its
data structures, since the ungrouper later may request to write
the members of a group while unfolding the tuples. It is also
important to note that both the tools again remained single-
threaded throughout the evaluation. SiLK took advantage of an
inherent concurency arising from a pipe between rwsort and
rwgroup, which makes the two processes run concurrently,
the effect of which gets more pronounced on higher ratios.
The profiling results from GNU gprof [21] indicate that 60%
of the time is taken in qsort comparator calls. As a result,
it comes as no surprise, that bifurcating qsort invocation to
multiple threads and later merging the results back using merge
sort will help parallelize the grouper stage and maybe reduce
the drift on higher ratios. In addition, since all of the evaluation
queries had grouping terms using an equality comparator, nfql
can introspect such a grouping rule to dynamically optimize
processing searches using a hashtable and turn to qsort based
grouping only as a fallback.

The third set of queries stress the group filter stage. We
reuse the filter and grouper queries that produce a 1.0 ratio to
allow the group filter to receive the entire trace as input. This
means, each flow record of the original trace now becomes a
group record for the group filter. The group filter then reuses
the same varying values of the packet field offset to control
the amount of groups that are filtered ahead. The filtered
groups are again written as flow-tools files using the same
zlib compression level. The ratio of the number of output
filtered groups to the number of the input groups is plotted
against time. The results are shown in Fig. 7.

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
i
m
e

(
s
e
c
s
)

Output Flows/Input Flows

Group Filter Stage

nfql
silk

Fig. 7. Group Filter Stage: nfql vs SiLK

It can be seen that the timings of nfql are far apart from
that of SiLK. It is due to the drift already created by the
grouper at the 1.0 ratio in the previous stage. As a result, the
group filter comes into play only after 300 seconds, whereas
SiLK’s group filtering already starts just below 150 seconds.
Even if we normalize the graph, it can be observed that the
nfql group filter has a higher slope. This is because it is
only executed once the grouper returns, and therefore has to
reiterate the groups to make a filtering decision.

The fourth set of queries stress the merger stage. We reuse
the filter, grouper and group filter queries that produce a 1.0
ratio. These queries are then run in two separate branches
to produce identical filtered group records. The merger then
applies match rules to produce different output to input ratios.
The groups that are merged are again written as flow-tools
files using the same zlib compression level. The ratio of the
number of merged groups to twice1 the number of flow records
in the original trace is plotted against time. The results are
shown in Fig. 8. A data point for SiLK for the 0.2 ratio is not
available since the NFQL query executed at that data point
uses OR expressions, which are not supported by SiLK.

It can be seen that the merger is the most performance
critical stage of the NFQL pipeline thus far. It is due to the
fact that the merger is working on twice the number of flow
records than any other previous stage. In addition, each branch
is writing the results of the filter, grouper and group filter
stage to flow-tools files. As a result, the amount of disk I/O
involved is twice as much as well. Even though each branch
is delegated to a separate core using affinity masks, most of

1Each branch pushes the entire trace as an input to the merger.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
i
m
e

(
s
e
c
s
)

Output Flows/Input Flows

Merger Stage

nfql
silk

Fig. 8. Merger Stage: nfql vs SiLK

time is taken in writing these results to the file. These results
although look less promising, they are way better than the
original NFQL merger implementation. The optimized merger
implementation takes advantage of sorted nature of filtered
groups and therefore can significantly reduce the number of
merger matches. It also writes a merged group record to a file
only once despite the number of times it has matched. Without
these optimizations, running such queries on the merger kept
the CPU churning for days without results.

The last set of queries stress the ungrouper stage. They
reuse the entire merger queries as is, but enable the ungrouper
as well. This means, that the ungrouper now attempts to
unfold the merged groups returned by the merger to write their
member flow records to flow-tools files. However, since the
merger receives each flow record as its own filtered group, each
merged group has only one member. As a result, the ungrouper
ends up rewriting the merged groups as flow-tools files
using the same zlib compression level. This means that the
execution engine ends up taking twice the amount of time
than the merger. It is important to note, that SiLK does not
have such an equivalent ungrouping tool and is therefore not
considered in this final evaluation.

VI. CONCLUSION

We presented nfql2, an efficient C implementation of
the stream-based flow query language, NFQL. The language
allows applying absolute or relative filters, aggregating flows
into groups, evaluating timing relationships among them, and
merging them into one collection. nfql can execute such
complex queries in matter of minutes, thereby expanding the
scope of current flow record processing tools. The conducted
performance evaluations reveal that nfql is on par with
tools that support only absolute filters. SiLK, the only openly
available package that provides tools that are similar to the rest
of NFQL’s processing pipeline appears faster. This is because
it can optimize its operations in favor of the limited set of
comparisons that are only based on equality, and its usage of a
different file storage format. The evaluation queries developed
as a part of this research work may also develop into a more
general benchmark suite for flow query tools and platforms.

2http://nfql.vaibhavbajpai.com

ACKNOWLEDGEMENTS

This work was partly funded by Flamingo, a Network of
Excellence project (ICT-318488) supported by the European
Commission under its Seventh Framework Programme.

REFERENCES

[1] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954 (Informational), Internet Engineering Task Force, Oct. 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3954.txt

[2] ——, “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information,” RFC
5101 (Proposed Standard), Internet Engineering Task Force, Jan. 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5101.txt

[3] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An Overview of IP Flow-Based Intrusion Detection,” Communications
Surveys Tutorials, IEEE, vol. 12, no. 3, pp. 343 –356, quarter 2010.

[4] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A survey on internet traffic identification,” Communi-
cations Surveys Tutorials, IEEE, vol. 11, no. 3, pp. 37 –52, quarter
2009.

[5] V. Marinov and J. Schönwälder, “Design of a Stream-Based IP Flow
Record Query Language,” in Proceedings of the 20th IFIP/IEEE In-
ternational Workshop on Distributed Systems: Operations and Man-
agement: Integrated Management of Systems, Services, Processes and
People in IT, ser. DSOM ’09. Berlin: Springer-Verlag, 2009, pp. 15–28.

[6] J. F. Allen, “Maintaining knowledge about temporal intervals,”
Communications of the ACM, vol. 26, pp. 832–843, November 1983.
[Online]. Available: http://doi.acm.org/10.1145/182.358434

[7] V. Perelman, N. Melnikov, and J. Schönwälder, “Flow signatures of
Popular Applications,” in Integrated Network Management (IM), 2011
IFIP/IEEE International Symposium on, May 2011, pp. 9 –16.

[8] K. Kanev, N. Melnikov, and J. Schönwälder, “Implementation of a
stream-based IP flow record query language,” in Proceedings of the
Mechanisms for autonomous management of networks and services,
and 4th international conference on Autonomous infrastructure, man-
agement and security, ser. AIMS’10. Springer-Verlag, 2010, pp. 147–
158.

[9] J. Schauer, “Flowy 2.0: Fast Execution of Stream based IP Flow
Queries,” Bachelor’s Thesis, Jacobs University Bremen, Campus Ring
1, 28759 Bremen, Germany, May 2011.

[10] L. Deri and S. Suin, “Effective traffic measurement using ntop,”
Communications Magazine, IEEE, vol. 38, no. 5, pp. 138 –143, may
2000.

[11] D. Plonka, “Flowscan: A network traffic flow reporting and
visualization tool,” in Proceedings of the 14th USENIX conference
on System administration, ser. LISA ’00. Berkeley, CA, USA:
USENIX Association, 2000, pp. 305–318. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1045502.1045522

[12] P. Haag, “Netflow Tools NfSen and NFDUMP,” in Proceedings of the
18th Annual FIRST conference, 2006.

[13] A. Oslebo, “Stager a web based application for presenting network
statistics,” in Network Operations and Management Symposium, 2006.
NOMS 2006. 10th IEEE/IFIP, april 2006, pp. 1 –15.

[14] S. Romig, “The OSU Flow-tools Package and CISCO NetFlow
Logs,” in Proceedings of the 14th USENIX conference on System
administration. Berkeley, CA, USA: USENIX Association, 2000,
pp. 291–304. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1045502.1045521

[15] CERT/NetSA at Carnegie Mellon University, “SiLK (System for
Internet-Level Knowledge),” [Online]. Available: http://tools.netsa.cert.
org/silk [Accessed: Sep 4, 2012].

[16] D. Crockford, “The application/json Media Type for JavaScript Object
Notation (JSON),” RFC 4627 (Informational), Internet Engineering Task
Force, Jul. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4627.txt

[17] Metaparadigm Pte Ltd., “json-c - JSON implementation in C,” [Online].
Available: http://oss.metaparadigm.com/json-c [Accessed: Sep 4, 2012].

[18] R. R. R. Barbosa, R. Sadre, A. Pras, and R. van de Meent,
“Simpleweb/University of Twente Traffic Traces Data Repository,”
http://eprints.eemcs.utwente.nl/17829/, University of Twente, Technical
Report TR-CTIT-10-19, April 2010.

[19] P. Deutsch and J.-L. Gailly, “ZLIB Compressed Data Format
Specification version 3.3,” RFC 1950 (Informational), Internet
Engineering Task Force, May 1996. [Online]. Available: http:
//www.ietf.org/rfc/rfc1950.txt

[20] M Oberhumer, “LZO real-time data compression library,” [Online].
Available: http://www.oberhumer.com/opensource/lzo [Accessed: Sep 4,
2012].

[21] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, Jun.
1982. [Online]. Available: http://doi.acm.org/10.1145/872726.806987

