
1

Network Flow Query Language − Design,
Implementation, Performance and Applications

Vaibhav Bajpai and Jürgen Schönwälder
Computer Science, Jacobs University Bremen, Germany

(v.bajpai | j.schoenwaelder)@jacobs-university.de

Abstract—Cisco’s NetFlow protocol and IETF’s IPFIX open
standard are widely deployed protocols for collecting network
flow statistics. Understanding intricate traffic patterns in these
network statistics requires sophisticated flow analysis tools that
can efficiently mine network flow records. We present NFQL,
a network flow query language, which can be used to write
expressive queries to process flow records, aggregate them into
groups, apply absolute or relative filters, and invoke Allen interval
algebra rules to merge group records. We demonstrate nfql, an
implementation of the language that has comparable execution
times to SiLK and flow-tools with absolute filters. However, it
trades performance when grouping and merging flows in favour
of more operational capabilities that help increase the expressive-
ness of NFQL. We present two applications to demonstrate richer
capabilities of the language. We show queries to identify flow
signatures of popular applications and behavioural signatures to
identify SSH compromise detection attacks.

Index Terms—NetFlow, IPFIX, flow-tools, nfdump, SiLK, ap-
plication signatures, SSH compromise detection

I. INTRODUCTION

Researchers, service providers and security analysts are
interested in network and user behavioral patterns of the traffic
crossing the Internet backbone. They want to use this infor-
mation for the purpose of billing and mediation, bandwidth
provisioning, detecting malicious attacks and network per-
formance evaluation. Traffic measurement techniques ranging
from capturing raw packets [1], [2] and aggregating flow
records [3], [4] to remote monitoring and metering provide
such insights. NetFlow and Internet Protocol Flow Information
Export (IPFIX) are the two popular protocols for collecting
network flow records [5]. NetFlow [6] is a network protocol
designed by Cisco Systems which allows routers to generate
and export flow records to a designated collector for further
analysis as shown in Fig. 1. IPFIX [7], [8] on the other hand
is an open standard defined by the Internet Engineering Task
Force (IETF), which is based on NetFlow version 9. The
popularity of these protocols can be attributed to reduction
in monitoring traffic volumes at the flow-level and the fine-
grained control which was not previously possible using
Simple Network Management Protocol (SNMP) interface-level
queries. Their wide applicability [9] can also be seen from the
pervasive use of flow records for a number of different network
analysis applications. For instance, Myung-Sup Kim et al. in
[3] use flow characteristics to formalize a detection function
that maps traffic patterns to different Denial of Service (DoS)
attacks, while Dominik Schatzmann et al. in [4] exploit timing
characteristics of webmail clients to classify features in flow

Internet

LAN

LAN

 Flow

exporter

 Flow

collector

 Flow

 traces

Analyzer

•

•

•

Fig. 1. An abstract view of flow-export protocols such as NetFlow and IPFIX.
A flow exporter reads IP packets that cross its boundary to generate flow-
records. The flow-records are exported based on some predefined expiration
rules. A flow collector on receiving these flow-records decodes and stores
them locally to be used for analysis by the flow analyzer [17].

records that could identify webmail traffic from any other traf-
fic running over HTTPS. Arthur Callado et al. in [10] provide
a survey of such flow-based techniques that perform behaviour
analysis and anomaly detection on Internet backbone traffic.
Anna Sperotto et al. in [11] take this further and provide a
survey of how network flow analysis can be used to detect
intrusion attacks. Understanding such intricate traffic patterns
requires sophisticated flow analysis tools that can mine flow
records for such a usage. However, capabilities of these tools
are limited by their language design. For instance, current tools
(such as flow-tools [12], [13] and nfdump [14], [15])
either only allow absolute value comparison or limit relative
comparisons to equality relationships (such as SiLK [16])
between flow record fields. As a consequence, applications
cannot leverage these tools owing to their simplistic design.

We present NFQL, a network flow query language which
can be used to write queries to process flow records. NFQL can
filter flows (we use flows as a shorthand for flow records). It
can combine filtered flows into groups (unlike flow-tools
and nfdump) and can calculate statistics on the resultant
groups. It can further merge grouped flows. It can apply
absolute or relative filters when grouping or merging. It can
also apply temporal relations between groups using Allen
interval algebra rules [18]. Furthermore, (unlike SiLK) it can
unfold grouped flows back into individual flows. nfql [19]
is an implementation of NFQL that has comparable execution
times to flow-tools and SiLK with absolute filters. We

2

utilise nfql to present two applications to demonstrate the
power of NFQL. Overall, we provide 4 main contributions −
− NFQL, a network flow query language. It can filter

flows, combine flows into groups, calculate temporal
relationships and aggregated statistics on groups, merge
grouped flows, (see § III) apply absolute or relative filters,
and unfold grouped flows into individual flows. NFQL
supports 6 absolute comparators, 7 interval operators, 10
aggregation operators and 3 bitwise operators.

− nfql [19], an implementation of NFQL. It can read
and write flows in NetFlow v5 and IPFIX format. The
query exclusively uses IPFIX (see § IV) entity names
and datatypes to keep consistency across trace formats.
nfql can disable each pipeline stage at runtime and write
output flows to disk at different compression levels.

− A performance evaluation that shows that nfql has
comparable execution times to SiLK and flow-tools
(see § V) with absolute filters. The queries used for
evaluation are released to support development of a
general benchmarking suite for flow analysis tools.

− Two applications demonstrate the power and expressive-
ness of the query language. NFQL queries are presented
to identify flow (see § VI) signatures of popular ap-
plications and behavioural signatures to identify SSH
compromise detection attacks.

This paper builds on our work published previously in [20],
[21], [22], [23], [24]. This paper not only provides a summary
of our research but also extends it in several ways. We have
implemented support for IPFIX flows in nfql. We have added
a translation layer to allow the NFQL query to exclusively
use IPFIX entities and datatypes. A front-end parser has also
been implemented to validate queries written in the NFQL
Domain Specific Language (DSL). We also revisited NFQL
queries that identify application signatures for current versions
of applications. Furthermore, we present a new application of
NFQL to identify SSH compromise detection attacks.

II. BACKGROUND AND RELATED WORK

Flow records [5] are typically identified by a seven tuple
flow-key consisting of source and destination IP address,
source and destination port, IP protocol, ingress interface
and IP type of service. IP packets sharing this information
belong to one flow. In addition to the flow-key, flow records
can also contain additional accounting information such as
flow start and end times, sum of bytes in a flow or source
and destination Autonomous Systems (AS) numbers. A flow
exporter reads IP packets (see Fig. 1) that cross its boundary to
generate flow-records. The flow-records are exported based on
some predefined expiration rules such as a TCP FIN or RST,
an inactivity timeout, a regular export timeout or crossing a
low memory threshold. To achieve efficiency when handling
large amounts of traffic, flow-records once transmitted to the
collector are deleted from the exporter. A collector receives
flow-records, decodes and stores them locally to be used for
further processing by the flow analyzer.

NetFlow and IPFIX are two popular standards of IP flow
information export. NetFlow [6] is a proprietary network

TABLE I
NETFLOW VERSION HISTORY

VERSION FEATURES

v1, v2, v3, v4 original format with several internal releases
v5 CIDR / AS support and flow sequence numbers
v6, v7, v8 router-based aggregation support
v9 template-based with IPv6 and MPLS support
IPFIX universal standard, transport-protocol agnostic

TABLE II
FLOW QUERY LANGUAGES

TOOL QUERY LANGUAGE

Nickless et al. [26] SQL
Babcock et al. [27] extended SQL
Gigascope GSQL
Tribeca proprietary
tcpdump BPF
nfdump BPF
CoralFeef BPF
Time Machine BPF
flow-tools proprietary
FlowScan perl scripts
AutoFocus proprietary
SiLK proprietary

protocol designed by Cisco Systems. Table I provides a
summary of the NetFlow version history. NetFlow v1 was
introduced in the 90s, however it was only until v5 with
the introduction of Classless Inter-Domain Routing (CIDR)
and AS support that the technology became mainstream. The
latest version, NetFlow v9 provides flexibility of user-tailored
export templates, Multiprotocol Label Switching (MPLS) and
IPv6 support and a larger set of flow keys. IPFIX [7] on the
other hand is an open standard defined by the IETF, which is
based on NetFlow v9. The novelty of IPFIX lies in its ability
to describe record formats at runtime using templates based
on an extensible information model [25]. The data transfer
mechanism is unidirectional and transport protocol agnostic.

A number of languages have been developed to query
the flows exported by these protocols. Table II provides a
summary of query languages used by network traffic analysis
tools today. As can be seen, a number of network analysis
applications are based on SQL. For instance, Bill Nickless et
al. in [26] present a system that uses a relational database to
store attributes of NetFlow records. Brian Babcock et al. in
[27] take this further and propose the design of a Data Stream
Management System (DSMS) that extends SQL to model
flows as transient data streams. Charles Cranor et al. in [28]
propose Gigascope, a stream database for network monitoring
applications. It uses GSQL, an adaptation of SQL that allows
time window definitions inside a query. Mark Sullivan et
al. in [29] introduce Tribeca, a stream-oriented DBMS that
supports projection, selection, aggregation, multiplexing and
demultiplexing of streams. Filtering languages on the other
hand rely on the Berkeley Packet Filter (BPF) [30] to specify
rules to filter a stream of packets. BPF can construct logical
expressions for filtering network traces which can be translated
into small programs that are executed by a generic packet fil-

3

Design of a Stream-Based IP Flow Record Query Language 19

of an initial record (a query) followed by one or more responses. Its most basic
use is to group records into both sides of a bidirectional session, such as a HTTP
request.

3 Stream-Based Flow Query Language

Our framework for IP flow filtering follows a stream-oriented approach — it
consists of a number of processing elements or operators, which are connected
with each other via pipes. Each element receives an input stream, performs some
sort of operation on it (filtering, aggregation etc.) and the output stream is piped
to the next element. Figure 1 shows the framework and in the following sections
we describe each of its elements. A complete definition of the syntax and the
semantics of the elements can be found in [19]. Section 4 provides an example
illustrating the usage of the primitives of the stream-based flow query language.
The names of the filtering primitives in our language are closely linked to the
flow record attributes in RFC 5102 [18].

Fig. 1. IP flow filtering framework

3.1 Splitter

The splitter is the simplest operator in the IP flow filtering framework. It
takes the input stream of flow records and copies them on each output stream
without performing any changes on them. There is one input branch and several
output branches for a splitter.

3.2 Filter

The filter operator takes a stream of flow records as input and copies to its
output stream only the flow records that match the filtering rules. The flow
records, which do not match the filtering rules are dropped. The filter op-
erator performs absolute filtering, it compares the flow attributes of the input

not supported by SiLK

not supported by {flow-tools, nfdump}

Fig. 2. NFQL execution pipeline consisting of six stages: splitter, filter, grouper, group filter, merger and ungrouper. The filter, grouper and group filter stages
can have multiple instances using branches. A branch is used to create a logical separation of disparate tasks. flow-tools and nfdump only support the
filter stage while SiLK does not support an ungrouper stage of the NFQL processing pipeline.

tering engine. BPF rules are used by tcpdump, nfdump [15],
CoralReef [31] and Time Machine [32] network analysis tools.
flow-tools [13] is backed up by a procedural language
design. It uses the Cisco Access Control List (ACL) format to
prepare filter expressions and proprietary primitives to define
flow reports. FlowScan [33] uses a collection of perl scripts to
glue together a flow-collector, a Round-robin Database (RRD)
and a visualization tool to generate traffic reports.

A range of graphical utilities such as ntop [34], FlowScan
[33], FlowViewer, NfSen [15] and Stager [35] can be used
to perform simple network analysis. These tools understand
the NetFlow format while ntop and Stager can also process
IPFIX flow-records. We do not describe every related tool
in this paper, but refer the reader to [15] for an exhaustive
survey of open-source and commercial tools used for flow-
export, collection and analysis. We instead further describe
tools that we use in our performance evaluation. For instance,
flow-tools and nfdump are among the most popular tools
used for analyzing NetFlow data. flow-tools [13] is a suite
of programs for capturing and processing NetFlow v5 flow
records. It consists of 24 separate tools that work together by
connecting them via UNIX pipes. It can capture, read, filter,
and print flow records internally saved in a fixed-size format.
nfdump [15] is a very similar tool that uses a different storage
format. SiLK [16] provides a collection of command-line tools
that can be used to write scripts for querying flow records.
SiLK comes quite close to providing similar capabilities as
NFQL. However, relative comparisons in SiLK can only be
performed using an equality operator, while NFQL supports a
richer set of comparison operations (such as greater than, less
than, greater or equal, less or equal) when comparing flows.
The design and implementation of SiLK, also differs from
that of nfql. For instance, in SiLK there are separate tools
to perform the task of each stage (see Fig. 2) of the NFQL
processing pipeline. There are also stringent requirements on

how the flow-data needs to be organized in SiLK before it can
be piped into a tool. For instance, the grouping tool assumes
that the input flow data is already sorted on the field column.
These requirements can make it a little cumbersome to design
an NFQL query in SiLK. For instance, trying to mimic a
NFQL query in SiLK sometimes ends up as a shell script
with over a dozen of SiLK tools piped together.

III. LANGUAGE DESIGN

The query language consists of a number of independent
stages that are connected to one another to form a processing
pipeline as shown in Fig. 2. The pipeline model is modular
and it consists of six different stages − splitter, filter, grouper,
group filter, merger and ungrouper. The filter, grouper and
group filter stages can have multiple instances using branches.
A branch serves to create a logical separation of disparate
tasks. The input flow records enter through the splitter and the
resultant flows that satisfy the pipeline conditions exit out of
the ungrouper stage. flow-tools and nfdump are limited
to absolute comparisons of flow attributes, which is simply
one stage of the NFQL processing pipeline while SiLK does
not support ungrouping of grouped flows.

A. Processing Pipeline
We use a sample query as a running example to not only

present each pipeline stage but also to introduce the DSL used
to express the query. Let’s assume we want to find within
our trace all flow pairs representing HTTP (or HTTPS) traffic
over both IPv4 and IPv6 that have exchanged more than 200
packets in both directions. In order to do this we define two
branches. Branch A will retrieve outgoing flows while branch
B will retrieve incoming flows. A merger will later be used to
correlate incoming and outgoing flows. Although IPFIX is able
to export bidirectional flow records [36], we assume our input
trace in this example consists of unidirectional flow records.

4

Splitter − is the first pipeline stage as shown in Fig. 2. It
reads flow records from disk in NetFlow v5 or IPFIX format.
The splitter duplicates the input data to several branches
without any processing whatsoever. This allows each branch
to receive an identical copy of the flow data to process it
independently. A splitter is always executed and takes no
additional arguments. It is implicitly specified and is therefore
not needed to be described in the query.

Filter − is the second stage of the processing pipeline and
the first stage in each branch. It performs absolute filtering
of flow records. The filter compares fields of a flow-record
against either a constant value or a value on a different field
of the same flow-record. flow-tools and nfdump support
only this stage of the pipeline. Listing 1 shows the DSL used
to express the filter. It is used to select TCP packets destined
(branch A) or sourced (branch B) over port 80 (or 443).

1 branch A {
2 filter F {
3 destinationTransportPort = 80 OR \
4 destinationTransportPort = 443
5 protocolIdentifier = TCP
6 }
7 }
8
9 branch B {
10 filter F {
11 sourceTransportPort = 80 OR \
12 sourceTransportPort = 443
13 protocolIdentifier = TCP
14 }
15 }

Listing 1. Filter construct for HTTP (or HTTPS) requests and responses

Each statement is called a term. A collection of terms
wrapped in braces is called a clause. Terms within a clause
are conjunctives while multiple clauses are disjunctives. In this
way, each stage in our pipeline is a Disjunctive Normal Form
(DNF) expression. For instance, Listing 1 has only one clause
with two terms in each branch. As such, the filter lets flows
pass which specify a destination port 80 or 443 and which
were sent via TCP. Note that the DSL uses IPFIX entity names
and datatypes (see § IV for details) [25] for both NetFlow v5
and IPFIX flows. The flows that pass the filter are forwarded
to the next stage, while the rest of the flows are dropped.

Grouper − combines flow records together into groups
and it optionally assigns attributes to those groups. Flows can
be grouped using either an absolute or relative comparator.
Listing 2 shows the DSL used to express the grouper stage.
In our example, the grouper DSL happens to be identical for
both branches. This grouper combines together all flows (lines
3 − 14) which share the same source and destination IPv4 (or
IPv6 endpoint) and whose timestamp (lines 13 − 14) differs
by a maximum of 500 ms. Furthermore, we use an aggregation
block (lines 16 − 25) to assign attributes to each created group.
For instance, each group is labeled with the shared source and
destination IP addresses (lines 17 − 20), the overall amount of
transmitted bytes (line 21) and packets (line 22) and flow start
and end times (lines 23 and 24). The newly formed groups
and their attributes are passed on to the next stage.

Group Filter − is the last processing stage of a branch. The
group-filter performs absolute filtering over group attributes.

The group-filter compares fields (or aggregated fields) of a
group-record against either a constant value or a value on
a different field of the same group-record. Listing 3 shows
the DSL used to express the group filter stage. Note, in our
example, the group filter DSL happens to be identical in both
branches. This group filter passes groups that have exchanged
more than 200 packets in both directions. The passed group-
records are forwarded to the next stage, while the rest of the
group-records are dropped.

1 branch ... {
2 grouper ... {
3 sourceIPv4Address = \
4 sourceIPv4Address OR \
5 sourceIPv6Address = \
6 sourceIPv6Address
7
8 destinationIPv4Address = \
9 destinationIPv4Address OR \
10 destinationIPv6Address = \
11 destinationIPv6Address
12
13 flowStartMilliseconds = \
14 flowStartMilliseconds delta 500
15
16 aggregation {
17 static(sourceIPv4Address)
18 static(sourceIPv6Address)
19 static(destinationIPv4Address)
20 static(destinationIPv6Address)
21 sum(octetDeltaCount)
22 sum(packetDeltaCount)
23 min(flowStartMilliseconds)
24 max(flowEndMilliseconds)
25 }
26 }
27 }

Listing 2. Grouper construct for matching IP endpoints.

1 branch ... {
2 groupfilter ... {
3 packetDeltaCount > 200
4 }
5 }

Listing 3. Group filter construct for passing groups with > 200 packets

Merger − merges group records from different branches
to create streams. Listing 4 shows the DSL used to express
the merger stage. In our example, the HTTP request flow is
matched with the HTTP response flow to create an HTTP
session. Groups from one branch whose source IP endpoint
is equal to the destination IP endpoint of the other branch
and the other way round (lines 6 − 14) are matched together.
We also need to make sure (line 16) that groups from branch
A must carry less data than the groups in branch B. This
indicates that the flows matched by branch A represent an
HTTP request while the flows matched by branch B represent
an HTTP response. Furthermore, the time spent for matching
groups must either overlap (A o B) or the request should
finish with the response (A f B). This is accomplished using
Allen interval algebra notation used in Line 17. We further
refer the reader to [18] that contains pictorial representation
of each Allen interval operation.

Ungrouper − is the last processing step. It unfolds the
stream of grouped flows into individual flows and saves them
to disk. SiLK does not support this stage. As a consequence,

5

• Supported Comparison Operations:
− EQ, NE, GT, LT, LE, GE

• Supported Interval Operations:
− X before Y (X < Y)
− X is equal to Y (X = Y)
− X meets Y (X m Y)
− X overlaps with Y (X o Y)
− X during Y (X d Y)
− X starts Y (X s Y)
− X finishes Y (X f Y)

• Supported Aggregations:
− UNION, MIN, MAX, SUM, MEDIAN
− COUNT, MEAN, STDDEV, XOR, PROD

• Supported Bitwise Operations:
− AND, OR, IN

Fig. 3. A summary of all possible operations. NFQL supports 6 absolute
comparators, 7 interval operators, 10 aggregation operators and 3 bitwise
operators. Only underlined operations are supported by SiLK.

once flows are grouped by SiLK, they cannot be unfolded
back into individual flows. Listing 5 shows the DSL used to
express the ungrouper. It does not take any arguments. Unlike
the splitter, if the ungrouper statement is not specified, this
step in the pipeline is not executed.

1 branch A { ... }
2
3 branch B { ... }
4
5 merger M {
6 A.sourceIPv4Address = \
7 B.destinationIPv4Address OR \
8 A.sourceIPv6Address = \
9 B.destinationIPv6Address
10
11 A.destinationIPv4Address = \
12 B.sourceIPv4Address OR \
13 A.destinationIPv6Address = \
14 B.sourceIPv6Address
15
16 A.octetDeltaCount < B.octetDeltaCount
17 A o B OR A f B
18 }

Listing 4. Merger construct for matching HTTP (or HTTPS) sessions

1 ungrouper U { }

Listing 5. Ungrouper contruct to save individual flows to disk

B. Operators and Functions

NFQL (unlike SiLK that only supports equality compar-
isons) allows several comparison operators as shown in Fig 3.
It also supports temporal comparisons using Allen time inter-
val algebra rules [18]. All operations can be appended with
the delta keyword, followed by a value. This allows one
to make inexact comparisons. For example, an Allen time
interval comparison could be appended with delta 1s to
allow a mismatch of at most 1 second. NFQL also allows

Execution Engine

Front-End Parser

JSON

Output Trace

nfql

NFQL Query

Input Trace

Fig. 4. The nfql architecture consists of a front-end parser backed up by
an execution engine. The front-end parser converts a user query written in
the NFQL DSL into a JSON format. The execution engine reads an input
trace from disk, executes the NFQL pipeline according to the JSON query
and writes the output trace to disk. The execution engine is written in C and
the front-end parser is written in Python.

functions to be applied to certain values. These functions can
be either bitwise operations or aggregations on values. Overall,
NFQL supports 6 absolute comparators, 7 interval operators,
10 aggregation operators and 3 bitwise operators.

IV. IMPLEMENTATION

nfql [19] is a reference implementation of NFQL. The
architecture is composed of an execution engine and a front-
end parser as shown in Fig. 4. The front-end parser is used
to validate the NFQL query and to generate its JSON (see
Listing 6 for an example) intermediate representation. The
execution engine reads the flow-query in this intermediate
JSON format [37] along with flow traces that are read in
memory for efficient processing. The execution engine is the
brain of nfql where the complete processing pipeline (see
§ III) is executed to process the input flow trace to produce
an output trace that is written to disk. The execution engine
is written in C and the front-end parser is written in Python.

1 "filter": {
2 "dnf-expr": [{
3 "clause": [{
4 "term": {
5 "offset": {
6 "name": "destinationTransportPort",
7 "value": 80
8 },
9 "op": "RULE_EQ"
10 }
11 }]
12 }]
13 }

Listing 6. JSON representation of a filter construct

A. Front-End Parser

A front-end parser is used to validate a query written in
the NFQL DSL and to convert it into an intermediate JSON
representation. This intermediate format is helpful in com-
pletely decoupling the parser from the performance sensitive
execution engine. As a result, the execution engine can now
be deployed on a high-end machine, while the parsing can
either be done locally or through a remote web service. The

6

intermediate JSON format also allows one to write additional
frontends to the execution engine that can emulate other
popular DSL formats such as nfdump. Listing 6 shows an
example of a JSON representation of a filter construct. Each
stage of the pipeline is expressed in the JSON query as a DNF
expression as previously discussed in § III.

The NFQL query can also disable the pipeline stages at
runtime. This means that one only has to supply the constructs
that one wishes to use. The parser will not emit the disabled
stages in the intermediate JSON representation.

B. JSON Intermediate Format

The execution engine uses json-c [38] to parse the JSON
representation of the NFQL query. C structs are used to map
the query fields. When reading the JSON query at runtime,
the field names of a flow record are read in as strings. Utility
functions are defined that map these field names to internal
struct offsets and the field types / operations to internal
enum members. Furthermore, each individual branch of the
pipeline is described in a self-contained branch struct. In
this way, the abstract objects that store the JSON query and
the results that incubate from each pipeline stage become self-
descriptive and hierarchically chainable as shown in Listing 7.

1 struct flowquery {
2 size_t num_branches;
3 size_t num_merger_clauses;
4
5 struct branch** branchset;
6 struct merger_clause** merger_clauseset;
7 struct merger_result* merger_result;
8 struct ungrouper_result* ungrouper_result;
9 };
10
11 struct branch {
12 int branch_id;
13 struct ftio* ftio_out;
14 struct ft_data* data;
15
16 size_t num_filter_clauses;
17 size_t num_grouper_clauses;
18 size_t num_aggr_clause_terms;
19 size_t num_groupfilter_clauses;
20
21 struct filter_clause** filter_clauseset;
22 struct grouper_clause** grouper_clauseset;
23 struct aggr_term** aggr_clause_termset;
24 struct groupfilter_clause** groupfilter_clauseset;
25
26 struct filter_result* filter_result;
27 struct grouper_result* grouper_result;
28 struct groupfilter_result* gfilter_result;
29 };

Listing 7. C structs that hold the JSON query and its results.

The execution engine uses disable flags to enable/disable
a pipeline stage. These flags get turned on for the pipeline
stage constructs that are not written in the JSON query by the
front-end parser.

C. I/O Processing

The execution engine supports reading and writing flows in
NetFlow v5 and IPFIX [39] format. A C library has been writ-
ten to read and write NetFlow v5 flows using flow-tools
[13] and IPFIX flows using libfixbuf [40] which supports
templates and information elements defined in the IPFIX

0 1 2 3 4 5 6 7 8 9
z-level

0
150
300
450
600
750

Ti
me
 (
s)

Effects of Compression Levels

Filter Stage

Fig. 5. The effects of compression level on the performance of the filter stage.
An increase in each level adds an overhead on the time to write flows to disk.

information model [25]. The library sequentially reads flow-
records into memory. These flows are indexed to support
random access retrieval in O(1) time. This allows NFQL
grouper and merger stages to support relative filtering of flows,
which is not possible with flow-tools and nfdump. Each
flow-record is stored in a char array and the offsets to each
field are stored in separate structs as shown in Listing 8.
The engine also supports the capability to read multiple input
traces from stdin. This allows users to either flow-cat
(using flow-tools suite for NetFlow v5 traces) or rwcat
(using SiLK suite for IPFIX traces) the input trace and pipe
the results into nfql for processing. In this way, nfql can
be easily plugged into a UNIX pipeline.

1 struct ft_data {
2 int fd;
3 struct ftio io;
4 struct fts3rec_offsets offsets;
5 struct ftver version;
6 u_int64_t xfield;
7 int rec_size;
8 char** recordset;
9 size_t num_records;
10 };

Listing 8. C struct that holds the flow trace.

Writing of flows can be requested at any stage of the
processing pipeline. This not only allows the user to see
intermediary results but is also useful for debugging purposes.
Flows can be written in either binary format or printed on
screen in a human-readable output. The execution engine uses
the zlib [41] software library to compress results that are
being written to disk. zlib supports 9 compression levels
with 9 being the highest compression level. The execution
engine allows the user to configure the desired compression
level at runtime. A default level of 5 is used for writing
to disk if a choice is not indicated. Fig. 5 shows the time
taken to write a sample of filtered flows of an input trace
(see § V for details on the trace and evaluation machine)
depending on the requested level of compression. It can be
seen that each level adds its own performance overhead.
Furthermore, one must note that not every flow analyser uses
zlib compression technique. For instance, nfdump uses
lzo [42] compression algorithm to trade space for faster
compression and decompression.

As mentioned before, the NFQL query uses IPFIX entity
names and datatypes [25] for both NetFlow v5 and IPFIX

7

TABLE III
RUNTIME COMPLEXITY

PIPELINE STAGE RUNTIME COMPLEXITY

Filter (worst case) O(n) where n = num(flows)
Grouper (average case) O(n ∗ lg(k)) +O(p ∗ n ∗ lg(n)) where k = num(unique(flows)), p = num(terms)
Group Aggregation (worst case) O(n)
Group Filter (worst case) O(g) where g = num(groups)
Merger (worst case) O(gm) where m = num(branches)
Ungrouper (worst case) O(g)

TABLE IV
IPFIX ENTITIES→ NETFLOW V5 FIELD NAMES

NETFLOW v5 IPFIX

srcaddr sourceIPv4Address
dstaddr destionationIPv4Address
nexthop ipNextHopIPv4Address
dPkts packetDeltaCount
dOctets octetDeltaCount
dFlows deltaFlowCount
First flowStartSysUpTime
Last flowEndSysUpTime
srcport sourceTransportPort
dstport destinationTransportPort
tcp_flags tcpControlBits
prot protocolIdentifier
tos ipClassOfService
src_as bgpSourceAsNumber
dst_as bgpDestinationAsNumber
src_mask sourceIPv4PrefixLength
dst_mask destinationIPv4PrefixLength

flows. This allows the query to remain consistent across trace
formats. In order to maintain backward compatbility with
NetFlow v5, we devised a translation of IPFIX entities to
NetFlow v5 field names as shown in Table IV.

D. Execution Workflow

In order to be able to make comparisons on field offsets of
a term, the NFQL query supplies the type of the comparison
and the length of the field offset. As such, this information
is read by the execution engine only at runtime by when
it needs a comparator function to perform this task. There
are around 450 Information Elements (IE) [43] registered for
the IPFIX protocol alone. In order to subvert the need to
define complex branching statements with so many entities, a
dedicated comparator is defined for every possible field length
and comparison operation. A Python script generates C source
code for these comparators at compile time conforming to the
structure shown in Listing 9.

1 struct filter_term {
2 size_t field_offset;
3 uint64_t value;
4 uint64_t delta;
5 struct filter_op* op;
6 bool (*func)(
7 const char* const record,
8 size_t field_offset,
9 uint64_t value,
10 uint64_t delta
11);
12 };

Listing 9. C struct that holds the filter construct of a JSON query.

This allows term definitions to make runtime calls using
a function name derived from the combination of operation
type and field length. The execution engine runs each branch
in a separate POSIX thread. Affinity masks are used to help
delegate each thread to a separate processor core. This allows
the engine to parallelize portions of the NFQL pipeline.
Table III provides a summary of the runtime complexity of
each stage. We discuss further optimizations performed within
each stage of the pipeline.

Splitter − The execution engine uses pointers to reference
a flow record in the char array of flows. This eliminates the
need to copy flow-records when splitting across branches in
the pipeline. As a result, there is no dedicated splitter stage in
the execution engine. Each branch references the flow records
from a common memory location. This helps keep memory
costs at a minimum when multiple branches are involved.

Filter − The execution engine needs to read all flow records
of the input trace into memory before starting the processing
pipeline. Since the filter stage uses a set of absolute rules
provided by the query to make a decision on whether or not
to accept a flow record, it has to pass through the whole
in-memory set of flows again to produce filtered results.
This technique involves multiple linear runs on the trace and
therefore slows down when the ratio of the number of filtered
flows to the total number of input flows is high. We optimise
this behavior by running the filter stage during the process of
reading the trace. This means, a decision on whether or not to
make room for a flow in memory and eventually hold a pointer
for it in filtered results is done upfront as soon as the flow is
read from the trace. In addition, if a request to write the filter
stage results to disk has been made, the writes are also made
as soon as the filter stage decision is available. This allows
reading-filtering-writing to happen in O(n) time, where n is
the number of flows in the trace as shown in Table III. Using a
publicly available input trace (see § V for details on the trace
and evaluation machine) we compare the performance benefits
of such an inline filter as shown in Fig. 6. The ratio of the
number of filtered records in the output trace to the number of
the flow records in the input trace is plotted against the time
taken to process the trace. It can be seen that an inline filter
stage implementation runs 10 times faster than a dedicated
filter and its benefits are more pronounced when more flows
are accepted by the filter in the processing pipeline.

Grouper − allows relative comparison between field offsets
of two different flows. In order to do such comparisons, a
simple approach is to linearly walk through each flow against
the entire set leading to a complexity of O(n2), where n is

8

0.0 0.2 0.4 0.6 0.8 1.0
Output Flows / Input Flows

0
120
240
360
480
600

Ti
me
 (
s)

Filter Stage

dedicated
inline

Fig. 6. Performance comparison of an inline filter against a dedicated filter
stage as defined by the processing pipeline. An inline filter runs 10 times
faster than a dedicated filter and its benefits are more pronounced when more
flows are accepted by the filter.

0.0 0.2 0.4 0.6 0.8 1.0
Output Flows / Input Flows

0
150
300
450
600
750
900

Ti
me
 (
s)

Grouper Stage

generic
specific (EQ)

Fig. 7. Performance benefits of special case handling of the equality operator
when grouping flows against the generic case. With an equality operation, the
need to search for unique records and a subsequent binary search goes away.

the number of filtered flows. A better approach can be to
use a hash table and then map each pointer while walking
down the filtered flows once, leading to a complexity of O(n).
The hash table approach, however, only works on equality
comparisons (such as SiLK), while NFQL supports more (see
Fig. 3) operations. As such, the execution engine follows a
hybrid approach. It sorts the filtered flows based on the field
offsets indicated in the NFQL query. This helps the execution
engine perform a nested binary search to reduce the linear
pass to a fairly small set of filtered flows. As a result, the
grouper can perform faster search lookups to find records that
must group together in O(n∗ lg(k)) time with a preprocessing
step taking O(p ∗ n ∗ lg(n)) in the average case, where n is
the number of filtered records, p is the number of grouping
terms in a clause and k is the number of unique filtered flows
as shown in Table III. We further optimized the grouper for
equality comparisons. With an equality comparison, the need
to search for unique records and a subsequent binary search
goes away. Fig. 7 shows the performance benefits of special
case handling of the equality operator against the generic case.
Groups with an equality operation can now be formed in O(n)
time with the same preprocessing step taking O(p∗n∗ lg(n)).

Each resultant group record is a conglomeration of multiple
flow records with some common characteristics. Some of the
non-common characteristics (such as number of packets in
each flow) can also be aggregated into a single value using
group aggregations as defined in the query. Such an aggregated
group record is again mapped to a flow record template of the

input trace. This allows aggregated group records to be written
to disk as a representative of all its members.

Group Filter − filters groups based on absolute rules
defined by the query. The implementation is similar to that
of a filter and the stage has a complexity of O(g) where g is
the number of grouped flows as shown in Table III.

Merger − is used to relate filtered groups from different
branches to create streams. However, the number of branches
that need to be spawned is not known until runtime. As a
result, the execution engine uses an iterator that can provide
all possible permutations of grouped flows. The result of the
iterator is later used to make a match.

Furthermore, the merger needs to match a grouped flow
from one branch with grouped flows of every other branch.
This leads to a complexity of O(gm) where g is the number
of filtered grouped flows and m is the number of branches
as shown in Table III. The possible number of tries when
matching grouped flows can be reduced by sorting grouped
flows on the field offsets specified by the query. This allows
us to optimize the merger to skip over iterator permutations
when the state of a current field offset value may not allow
any further match beyond the index in the current branch. This
means, if same field offsets are used, the query designer can
get performance benefits by keeping the same order of terms
in both grouper and merger stages.

The query language also bases merger matches on the
notion of matched tuples. This means that a filtered grouped
flow can be written to disk multiple times if it is part of
multiple matched tuples. This situation worsens when different
branches result in similar filtered grouped flows. Since, the
function of the merger is to find a match of grouped flows
across branches, all grouped flows across branches that satisfy
the condition can be clubbed into one collection instead of
separate tuples. All grouped flows within a collection can
then be written disk at once. This eliminates the inherent
redundancy and significantly improves performance of the
merger stage.

Ungrouper − accepts a collection of matched filtered
grouped flows as input and iterates over each collection to
unfold its groups and write their flow record members to disk.

E. Further Performance Optimizations
There can be a situation where the user writing the query

may incorrectly ask for aggregation on a field already specified
in a grouper (or filter) clause. If the relative operator is an
equality comparison, the aggregation on such a field becomes
less useful, since members of the grouped flow will always
have the same value for that field. The execution engine detects
this kind of redundant request and ignores such aggregations.

The execution engine has dedicated comparator functions
for each type of operation and the type of the field offset
it operates upon. It is not guaranteed that given the type of
the query and the trace, the engine will eventually complete
all stages of the pipeline. It is also possible that the engine
exits early, because there is nothing more for the next stage
to compute. The function pointers therefore are set as late as
possible and are invoked from respective stages just before the
comparison is requested.

9

Each stage of the processing pipeline is dependent on the
result of the previous one. As a result, the next stage should
only execute, when the previous stage returned results. Imple-
menting such a response was straightforward for the grouper
and group filter. However, the merger stage proceeds only
when every branch has non-zero filtered groups. The iterator
initializer deallocates and returns NULL if any one branch has
0 filtered groups. Consequently a check is performed in the
merger to make sure that the initalizer is not NULL.

The flow-records echoed to the standard output can also be
written to disk. In fact, results from each stage of the pipeline
can be written to disk. This leads to additional loops over the
records if the writes are made at the end of the processing
pipeline. The execution engine therefore writes each record to
a file as soon as it exits out of the pipeline stage.

V. PERFORMANCE EVALUATION

We evaluated the performance of nfql using a publicly
available trace (#07, with ∼20M flows) from the SimpleWeb
[44] repository. The input trace is in the flow-tools format
and is compressed using the zlib suite using ZLIB_LEVEL
5. In order to perform comparisons, we also converted the
input trace to nfdump and SiLK formats while keeping the
same compression level. The performance evaluation was run
on a machine with 24 cores of 2.5 GHz clock speed and 18
GiB of memory. We black box each stage of the pipeline and
evaluate it against contemporary flow analysis tools.

Filter − We developed a set of queries to stress the filter
stage of flow-tools, nfdump, nfql and SiLK. Each
query increases the threshold on the packetDeltaCount
field offset [25] to control the amount of flow records that are
passed by the filter. The resultant filtered records are written
to disk and compressed at ZLIB_LEVEL 5. The ratio of the
number of filtered records in the output trace to the number
of the flow records in the input trace is plotted against the
time taken to process the trace as shown in Fig. 8. It can
be seen that the performance of the filter stage in nfql is
comparable to that of SiLK and flow-tools. SiLK takes
less time on lower ratios, but SilK and nfdump also use
their own file format. As a result, the amount of data that
needs to read (or written) is different to what it is for nfql
and flowtools. On the other hand, nfdump appears to be
significantly faster than the rest. This is because nfdump uses
the lzo compression scheme which trades space for achieving
faster compression and decompression. As such, adding lzo
compression support in nfql will help further decrease the
I/O times of the execution engine. Note that all the tools were
single-threaded in this evaluation. nfdump and flow-tools
only support the filter stage of the pipeline and therefore are
not considered in further evaluations.

Grouper − The second set of queries stress the grouper
stage of nfql and SiLK. We reuse the filter query that
produces a 1.0 output/input ratio to allow the grouper to
receive the entire trace as filtered flows. Similar to the filter
stage evaluation, the grouper part of the query then gradually
increases the number of grouping terms in the DNF expression
to increase the output/input ratio. The resultant groups are

0.0 0.2 0.4 0.6 0.8 1.0
Output Flows / Input Flows

0
15
30
45
60
75

Ti
me
 (
s)

Filter Stage

nfql
silk

flow-tools
nfdump

Fig. 8. Performance comparison of the filter stage of four analysis tools −
nfql, SiLK, flow-tools, nfdump. Performance of nfql is comparable to that of
flow-tools and SiLK. nfdump appears significantly faster because it uses the
lzo compression scheme to trade space for higher compression speeds.

0.0 0.2 0.4 0.6 0.8 1.0
Output Flows / Input Flows

50
100
150
200
250
300
350

Ti
me
 (
s)

Grouper Stage

nfql
silk

Fig. 9. Performance comparison of the grouper stage of nfql and SiLK. SiLK
saves time in higher ratios by not storing information of each flow within a
group since it does not support unfolding groups into original flows.

written to disk using the same zlib compression level. The
ratio of the number of groups formed to the number of the
input filtered flows is plotted against time taken to process the
trace as shown in Fig. 9. It can be seen that the time taken by
the tools are comparable on lower ratios, but on higher ratios,
nfql starts to drift apart. Since most of the time is taken
in writing the records to files, it is unclear whether SiLK’s
usage of its own file format is responsible for the drift. SiLK’s
query also invokes the rwgroup tool with a --summarize
flag to force it to write only the first record of each group
to make both tools write the same number of records. Since
SiLK does not support unfolding of grouped flows, it does
not store information about which members are part of the
group. nfql on the other hand needs to allocate resources
(which may take time) to keep this information in its data
structures, since the ungrouper later may request to write the
members of a group while unfolding the stream. It is also
important to note that both the tools again remained single-
threaded throughout the evaluation. SiLK took advantage of an
inherent concurency arising from a pipe between rwsort and
rwgroup, which makes the two processes run concurrently,
the effect of which gets more pronounced on higher ratios. The
profiling results from GNU gprof [45] indicate that 60% of
the time is taken in qsort comparator calls. As a result,

10

it comes as no surprise, that bifurcating qsort invocation
to multiple threads and later merging the results back using
merge sort will help parallelize the grouper stage and maybe
reduce the drift on higher ratios. In addition, since all of
the evaluation queries had grouping terms using an equality
comparator, nfql can introspect such a grouping rule to
dynamically optimize processing searches using a hashtable
and turn to qsort based grouping only as a fallback for other
comparison operators.

Group Filter − The third set of queries stress the group
filter stage of nfql and SiLK. We reuse the filter and grouper
queries that produce a 1.0 output/input ratio to allow the
group filter to receive the entire trace as input. This means,
each flow record of the original trace now becomes a group
record for the group filter. The group filter then reuses the
same varying values of the packetDeltaCount field offset
[25] to control the amount of groups that are filtered further.
The filtered groups are written to disk using the same zlib
compression level. The ratio of the number of output filtered
groups to the number of the input groups is plotted against time
taken to process the trace as shown in Fig. 10. It can be seen
that the timings of nfql are far apart from that of SiLK. It is
due to the drift already created by the grouper at the 1.0 ratio
in the previous stage. As a result, the group filter comes into
play only after 300 seconds, whereas SiLK’s group filtering
already starts just below 150 seconds. Even if we normalize
the graph, it can be observed that the nfql group filter has
a higher slope. This is because it is only executed once the
grouper returns, and therefore has to reiterate the groups to
make a filtering decision.

Merger − The fourth set of queries stress the merger stage
of nfql and SiLK. We reuse the filter, grouper and group filter
queries that produce a 1.0 output/input ratio. These queries are
then run in two separate branches to produce identical filtered
group records. The merger then applies match rules to produce
different output to input ratios. The groups that are merged are
written to disk using the same zlib compression level. The
ratio of the number of merged groups to twice (since each
branch pushes the entire trace as an input to the merger) the
number of flow records in the original trace is plotted against
time as shown in Fig. 11. A data point for SiLK for the 0.2
ratio is not available since the NFQL query executed at that
data point uses OR expressions which are not supported by
SiLK. It can be seen that the merger is the most performance
critical stage of the NFQL pipeline. It is due to the fact that the
merger is working on twice the number of flow records than
any other previous stage. In addition, each branch is writing
results of the filter, grouper and group filter stage to disk. As
a result, the amount of disk I/O involved is twice as much too.
Even though each branch is delegated to a separate core, most
of the time is spent in writing flows to disk. The optimized
merger takes advantage of the sorted nature of filtered groups
(see § IV) and therefore can significantly reduce the number
of merger matches. It also writes a merged group record to a
file only once despite the number of times it has matched.

Ungrouper − The last set of queries stress the ungrouper
stage of nfql. They reuse the entire merger queries as is, but
enable the ungrouper as well. This means, that the ungrouper

0.0 0.2 0.4 0.6 0.8 1.0
Output Flows / Input Flows

0
100
200
300
400
500

Ti
me
 (
s)

Group Filter Stage

nfql silk

Fig. 10. Performance comparison of the group filter stage of nfql and SilK.
SiLK performs better by running an inline filter while grouping the flows.

0.0 0.2 0.4 0.6 0.8 1.0
Output Flows / Input Flows

0
1000
2000
3000
4000
5000

Ti
me
 (
s)

Merger Stage

nfql
silk

Fig. 11. Performance comparison of the merger stage of nfql and SiLK. A
merger is the most performance critical stage where SiLK performs better.

now attempts to unfold the merged groups returned by the
merger to write individual flow records to disk using the same
zlib compression level. However, since the merger receives
each flow record as its own filtered group, each merged group
has only one member. As a result, the ungrouper ends up
rewriting the merged groups to disk. This means that the
execution engine ends up taking twice the amount of time
than the merger. SiLK does not support unfolding of grouped
flows and is therefore not considered in this final evaluation.

Overall, we observe that nfql has comparable execution
times in the filter stage to SiLK and flow-tools. SiLK
performs better in the later stages because it can optimize its
operations in favor of the limited set of equality operations (see
Fig. 3) and its usage of a different file storage format. nfql
trades performance in the grouping and merging stages to
increase the expressiveness of NFQL (see § VI) by supporting
more operations. We believe this to be an acceptable trade-off
since the language expands the scope of current flow process-
ing tools. The performance evaluation queries developed as a
part of this research work are released [19] to the community
to support development of a more general benchmark suite for
flow analysis tools.

VI. APPLICATIONS

We present two real-world applications of NFQL − using
flow-signatures to identify applications and using behavioural
signatures to identify SSH compromise detection attacks.

11

A. Application Identification using Flow Signatures

Techniques to identify classes (such as P2P traffic, or web
traffic) of application mix from network flow records are
available in literature. However, network operators not only
are interested in application mix, but are also interested in
identification of specific applications (such as Chrome or
Skype) that generate traffic in their network. This information
not only assists in security assessments to identify malicious
software, but also can be used to profile network usage
statistics broken down by specific applications. In this study,
we propose a technique to identify applications by searching
for their signatures in flow traces without using the Deep
Packet Inspection (DPI) mechanism. This is based on the
hypothesis that applications generate unique flow signatures
that can be used as a fingerprint for their identification. In order
to verify our hypothesis, we recorded flow traces of several
applications and subsequently analyzed the traces to identify
flow signatures of these applications. These flow signatures
were formalized as NFQL queries which were executed on
several flow traces to evaluate the approach.

Example − For the purpose of demonstration, we explain
an example NFQL query which was used to identify Skype
signatures from network flow records. Salman Baset et al.
in [46] perform a thorough inspection of Skype application
behavior during login, call establishment and media trans-
fer. We not only build our query upon these observations,
but also revisit and adapt the NFQL queries for current
version of Skype. For instance, on start-up, a Skype client
connects to skype.com and sends an HTTP GET request
/get1atestversion in order to check whether updates
are available. During initial login, the client sends four Simple
Service Discovery Protocol (SSDP) messages over UDP to
port 1900. Listing 10 shows the NFQL branch construct to
identify these SSDP messages.

1 branch SSDP {
2 filter F_SSDP {
3 destinationTransportPort = 1900
4 protocolIdentifier = UDP
5 destinationIPv4Address = 239.255.255.250
6 }
7 grouper G_SSDP {
8 sourceIPv4Address = sourceIPv4Address
9 destinationIPv4Address = \
10 destinationIPv4Address
11
12 aggregation {
13 sourceIPv4Address
14 destinationIPv4Address
15 sum(octetDeltaCount)
16 sum(packetDeltaCount)
17 }
18 }
19 groupfilter GF_SSDP {
20 packetDeltaCount >= 4
21 }
22 }

Listing 10. Branch construct to identify SSDP messages

During login, a client also sends four NAT Port Mapping
Protocol (NAT-PMP) [47] messages. The NAT-PMP new port
mapping request is sent over UDP to port 5351 and is resent
up to nine times by doubling the timeout (starting with 250

ms) in each successive interval. Listing 11 shows the NFQL
branch construct to identify these NAT-PMP messages.

1 branch NAT_PMP {
2 filter F_NAT_PMP {
3 destinationTransportPort = 5351
4 protocolIdentifier = UDP
5 }
6 grouper G_NAT_PMP {
7 sourceIPv4Address = sourceIPv4Address
8 destinationIPv4Address = \
9 destinationIPv4Address
10 aggregation {
11 sourceIPv4Address
12 destinationIPv4Address
13 sum(packetDeltaCount)
14 }
15 }
16 groupfilter GF_NAT_PMP {
17 packetDeltaCount >= 4
18 }
19 }

Listing 11. Branch construct to identify NAT-PMP messages

At each login, a Skype client contacts a Skype login
server. Afterwards, the client connects to a bootstrap supernode
on port 33033. The signature for Skype has an undefined
order of SSDP and NAT-PMP requests, but they are always
intersecting. To reflect this behaviour, we use a logical OR
(line 20) on two conditions: a group from either branch should
overlap with each other. The entire NFQL query used for
identification of Skype signatures is shown in Listing 12.

We further refer the reader to [23] for explanation of more
example NFQL queries used to identify other applications.

1 branch supernode {
2 filter F_supernode {
3 destinationTransportPort = 33033
4 protocolIdentifier = UDP
5 }
6 grouper G_supernode {
7 sourceIPv4Address = sourceIPv4Address
8 aggregation {
9 sourceIPv4Address
10 }
11 }
12 }
13 merger {
14 SSDP.sourceIPv4Address = \
15 NAT_PMP.sourceIPv4Address
16
17 NAT_PMP.sourceIPv4Address = \
18 supernode.sourceIPv4Address
19
20 NAT_PMP o SSDP OR SSDP o NAT_PMP
21 }
22 ungrouper {}

Listing 12. NFQL query to identify Skype application signature.

Validation − of NFQL queries was performed using a
controlled evaluation of a known data-set. The dataset was
obtained by identifying a pool of ten users who collected
flow data for a period of two weeks. Users were asked to
report applications they used during this collection period. Five
of those applications were chosen for identification. Table V
shows the results of application identification using NFQL
queries. A 4 marker indicates true positives, 6 indicates
true negatives and m indicates false positives. The two false
positives resulted from incorrect classification of iTunes flow

12

TABLE V
APPLICATION FLOW SIGNATURES: RESULTS

USER SKYPE OPERA AMAROK CHROME LIVE

#1 4 6 m 6 6
#2 4 6 6 6 6
#3 6 6 m 6 6
#4 4 6 6 6 6
#5 6 6 6 6 6
#6 4 6 4 4 6
#7 6 6 6 6 6
#8 6 4 4 6 6
#9 6 6 6 6 6

#10 4 4 4 4 6

records as those of the Amarok player because Amarok mimics
the iTunes behaviour and therefore has signatures similar to
iTunes. This reveals that 48 out of 50 application signatures
were correctly classified leading to a success rate of 96% for
these applications.

B. SSH Compromise Detection

Rick Hofstede et al. in [48] present a technique to detect
SSH compromises using NetFlow records. They rely on be-
havioural signatures of SSH clients and brute force attack
tools to characterise SSH attacks. We present NFQL queries
to represent the three-phase transition model that can be used
detect such SSH compromise attacks. The queries have been
tested by simulating a SSH dictionary attack in a lab setting.

Scan Phase − In this phase, an attacker port scans all
endpoints in an IP address block to detect hosts running a SSH
daemon on port 22. According to [48], in this phase attacking
flows have no more than 2 packets per flow, and there are
at least 200 flow records per 1 minute. Listing 13 presents a
NFQL branch construct to cover this phase.

1 branch SshScan {
2 filter ScanFilter {
3 destinationTransportPort = 22
4 protocolIdentifier = TCP
5 packetDeltaCount <= 2
6 }
7 grouper ScanGrouper {
8 sourceIPv4Address = sourceIPv4Address
9 flowStartSysUpTime = flowStartSysUpTime \
10 delta 60000
11 aggregation {
12 sourceIPv4Address
13 count(destinationIPv4Address)
14 }
15 }
16 groupfilter ScanGroupFilter {
17 destinationIPv4Address >= 200
18 }
19 }

Listing 13. A branch construct to detect a SSHCure scan phase.

The filter stage (lines 2−6) is used to filter flows that have
no more than 2 packets per flow and where the packets were
transmitted using TCP over port 22. In the grouper stage, we
begin by grouping flows by their source address (line 8). We
then restrict all flows in a group to start (line 9) within the
same minute. We further use an aggregator (lines 12−13) to
save source addresses and count the number of flows within

each group. In the group filter stage (lines 16−19), we filter
groups with at least 200 flows.

Brute-force Phase − In this phase, an attacker performs
a brute-force attack with different user name and password
combinations to the target hosts that responded in the first
phase. As a result, the amount of traffic significantly increases
in comparison to the previous stage. According to [48], this
phase has 8−14 packets per flow in a minute with at least 20
flow records per minute per attacker. Listing 14 presents the
NFQL branch construct to cover this phase.

1 branch BruteForce {
2 filter BFFilter {
3 destinationTransportPort = 22
4 protocolIdentifier = TCP
5 packetDeltaCount >= 8
6 packetDeltaCount <= 14
7 }
8 grouper BFGrouper {
9 sourceIPv4Address = sourceIPv4Address
10 flowStartSysUpTime = flowStartSysUpTime \
11 delta 60000
12 aggregation {
13 sourceIPv4Address
14 count(destinationIPv4Address)
15 }
16 }
17 groupfilter BFGroupFilter {
18 destinationIPv4Address >= 20
19 }
20 }

Listing 14. A branch construct to detect a SSHCure bruteforce phase.

The filter stage (lines 3−6) is used to identify flows where
packets are transmitted using TCP over port 22, with each flow
consisting of 8−14 number of packets. We reuse the grouper
(lines 8−15) from the scanning phase. In the group filter stage
we pass groups with at least 20 group records per attacker.

Compromise Phase − After a login to a compromised host
is successful, there is still some traffic between the attacker
and the host, which is less intensive when compared with the
traffic of the brute-force phase. According to [48], this phase
is identified as the phase which differs from the brute-force
phase where each flow has less than 8 packets per minute
or more than 14 packets per minute. Listing 15 presents the
NFQL branch construct to cover this phase.

1 branch DieOff {
2 filter DOFilter {
3 destinationTransportPort = 22
4 protocolIdentifier = TCP
5 packetDeltaCount < 8 OR \
6 packetDeltaCount > 14
7 }
8 grouper DOGrouper {
9 sourceIPv4Address = sourceIPv4Address
10 destinationIPv4Address = \
11 destinationIPv4Address
12 aggregation {
13 sourceIPv4Address
14 sum(packetDeltaCount)
15 }
16 }
17 groupfilter DOGroupFilter {
18 packetDeltaCount > 2
19 }
20 }

Listing 15. A branch construct to detect a SSHCure Dieoff Phase.

13

The filter stage (lines 2−6) is used to identify flows where
packets are transmitted using TCP over port 22 with number
of packets in each flow either being less than 8 or greater
than 14. The grouper stage (lines 8−16) is used to group flows
according to their source and destination addresses. Since, flow
records from the scanning phase can pass through these filters
as well, we define a group filter (lines 17−19) which removes
all flow records with less than 2 packets.

Listing 16 present the entire query where the merger finally
merges brute-force and compromise phases by the same source
address which is the assumed address of the attacker.

1 branch SshScan { ... }
2 branch BruteForce { ... }
3 branch DieOff { ... }
4
5 merger {
6 BruteForce.sourceIPv4Address = \
7 DieOff.sourceIPv4Address
8 }
9 ungrouper {}

Listing 16. A NFQL query to perform SSH compromise detection.

Overall, we demonstrated that NFQL can be used to identify
applications from their network flow fingerprints and detect
SSH compromise detection attacks.

VII. CONCLUSION

We presented NFQL, a stream-based flow query language. It
can filter flows, combine flows into groups, calculate temporal
relationships and aggregated statistics on groups. It can merge
grouped flows, apply absolute or relative filters, and unfold
grouped flows into individual flows. We demonstrated an
implementation of NFQL [19] that has comparable execution
times in the filter stage to SiLK and flow-tools. SiLK
performs better in grouping and merging stages since it can op-
timize its operations in favor of the limited set of comparisons
it supports. nfql trades performance in the grouping and
merging stages to support more operations to expand the scope
of current flow-processing tools. We presented applications to
demonstrate this expressiveness of NFQL.

We believe it would be useful in the future to invest
more effort [49] towards compiling a general benchmarking
methodology for such flow-analysis tools. Towards this goal,
we are releasing our performance evaluation queries [19] to
the community to support and strengthen this effort.

VIII. ACKNOWLEDGEMENTS

Vladislav Marinov proposed the DSL specification. Kaloyan
Kanev and Johannes Schauer wrote initial implementations.
Vladislav Perelman wrote queries to identify application sig-
natures. Durim Morina wrote the front-end parser. Corneliu-
Claudiu Prodescu added IPFIX support. Steffie Jacob Er-
avuchira and Veranika Liaukevich revisited queries to identify
application signatures for current versions of applications and
also wrote queries to detect SSH compromises.

This work was funded by Flamingo, a Network of Ex-
cellence project (ICT-318488) supported by the European
Commission under its Seventh Framework Programme.

REFERENCES

[1] K. Xu, Z. Zhang, and S. Bhattacharyya, “Profiling Internet Backbone
Traffic: Behavior Models and Applications,” ser. ACM SIGCOMM,
2005, pp. 169–180. [Online]. Available: http://doi.acm.org/10.1145/
1080091.1080112

[2] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
Traffic Classification in the Dark,” ser. ACM SIGCOMM, 2005, pp. 229–
240. [Online]. Available: http://doi.acm.org/10.1145/1080091.1080119

[3] M. Kim, H. Kang, S. Hong, S. Chung, and J. W. Hong, “A Flow-based
Method for Abnormal Network Traffic Detection,” ser. IEEE/IFIP
Network Operations and Management Symposium, NOMS, 2004.
[Online]. Available: http://dx.doi.org/10.1109/NOMS.2004.1317747

[4] D. Schatzmann, W. Mühlbauer, T. Spyropoulos, and X. A.
Dimitropoulos, “Digging into HTTPS: Flow-Based Classification
of Webmail Traffic,” ser. ACM SIGCOMM Internet Measurement
Conference IMC, 2010, pp. 322–327. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879184

[5] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for
IP Flow Information Export (IPFIX),” RFC 3917 (Informational),
Internet Engineering Task Force, Oct. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3917.txt

[6] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954 (Informational), Internet Engineering Task Force, Oct. 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3954.txt

[7] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP
Flow Information Export (IPFIX) Protocol for the Exchange of Flow
Information,” RFC 7011 (Internet Standard), Internet Engineering Task
Force, Sep. 2013. [Online]. Available: http://www.ietf.org/rfc/rfc7011.txt

[8] B. Trammell and E. Boschi, “An Introduction to IP Flow Information
Export (IPFIX),” ser. IEEE Communications Magazine, vol. 49, no. 4,
2011, pp. 89–95. [Online]. Available: http://dx.doi.org/10.1109/MCOM.
2011.5741152

[9] T. Zseby, E. Boschi, N. Brownlee, and B. Claise, “IP Flow
Information Export (IPFIX) Applicability,” RFC 5472 (Informational),
Internet Engineering Task Force, Mar. 2009. [Online]. Available:
http://www.ietf.org/rfc/rfc5472.txt

[10] A. C. Callado, C. A. Kamienski, G. Szabo, B. P. Gero, J. Kelner,
S. F. L. Fernandes, and D. F. H. Sadok, “A Survey on Internet
Traffic Identification,” ser. IEEE Communications Surveys and
Tutorials, vol. 11, no. 3, 2009, pp. 37–52. [Online]. Available:
http://dx.doi.org/10.1109/SURV.2009.090304

[11] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and
B. Stiller, “An Overview of IP Flow-Based Intrusion Detection,” ser.
IEEE Communications Surveys and Tutorials, vol. 12, no. 3, 2010.
[Online]. Available: http://dx.doi.org/10.1109/SURV.2010.032210.00054

[12] “flow-tools - A set of programs for processing and managing NetFlow
exports from Cisco and Juniper routers.” http://freecode.com/projects/
flow-tools, [Online; accessed 05-Aug-2016].

[13] S. Romig, M. Fullmer, and R. Luman, “The OSU Flow-tools
Package and CISCO NetFlow Logs,” ser. Conference on Systems
Administration LISA, 2000, pp. 291–303. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1045502.1045521

[14] “nfdump - A tool to collect and process netflow data on the command
line,” http://nfdump.sourceforge.net, [Online; accessed 05-Aug-2016].

[15] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to
Data Analysis With NetFlow and IPFIX,” ser. IEEE Communications
Surveys and Tutorials, vol. 16, no. 4, 2014, pp. 2037–2064. [Online].
Available: http://dx.doi.org/10.1109/COMST.2014.2321898

[16] M. Thomas, L. Metcalf, J. M. Spring, P. Krystosek, and K. Prevost,
“SiLK: A Tool Suite for Unsampled Network Flow Analysis at
Scale,” ser. IEEE International Congress on Big Data, 2014. [Online].
Available: http://dx.doi.org/10.1109/BigData.Congress.2014.34

[17] G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek, “Architecture
for IP Flow Information Export,” RFC 5470 (Informational), Internet
Engineering Task Force, Mar. 2009, updated by RFC 6183. [Online].
Available: http://www.ietf.org/rfc/rfc5470.txt

[18] J. F. Allen, “Maintaining Knowledge about Temporal Intervals,” ser.
Communications of the ACM, vol. 26, no. 11, 1983, pp. 832–843.
[Online]. Available: http://doi.acm.org/10.1145/182.358434

[19] “nfql - A C implementation of the network flow query language,” http:
//nfql.vaibhavbajpai.com, [Online; accessed 05-Aug-2016].

[20] V. Marinov and J. Schönwälder, “Design of an IP Flow Record
Query Language,” ser. Conference on Autonomous Infrastructure,
Management and Security, AIMS, 2008, pp. 205–210. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-70587-1_20

http://doi.acm.org/10.1145/1080091.1080112
http://doi.acm.org/10.1145/1080091.1080112
http://doi.acm.org/10.1145/1080091.1080119
http://dx.doi.org/10.1109/NOMS.2004.1317747
http://doi.acm.org/10.1145/1879141.1879184
http://www.ietf.org/rfc/rfc3917.txt
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc7011.txt
http://dx.doi.org/10.1109/MCOM.2011.5741152
http://dx.doi.org/10.1109/MCOM.2011.5741152
http://www.ietf.org/rfc/rfc5472.txt
http://dx.doi.org/10.1109/SURV.2009.090304
http://dx.doi.org/10.1109/SURV.2010.032210.00054
http://freecode.com/projects/flow-tools
http://freecode.com/projects/flow-tools
http://dl.acm.org/citation.cfm?id=1045502.1045521
http://dl.acm.org/citation.cfm?id=1045502.1045521
http://nfdump.sourceforge.net
http://dx.doi.org/10.1109/COMST.2014.2321898
http://dx.doi.org/10.1109/BigData.Congress.2014.34
http://www.ietf.org/rfc/rfc5470.txt
http://doi.acm.org/10.1145/182.358434
http://nfql.vaibhavbajpai.com
http://nfql.vaibhavbajpai.com
http://dx.doi.org/10.1007/978-3-540-70587-1_20

14

[21] ——, “Design of a Stream-Based IP Flow Record Query Language,” ser.
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management, DSOM, 2009, pp. 15–28. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04989-7_2

[22] K. Kanev, N. Melnikov, and J. Schönwälder, “Implementation of a
Stream-Based IP Flow Record Query Language,” ser. Conference on
Autonomous Infrastructure, Management and Security, AIMS, 2010.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-13986-4_21

[23] V. Perelman, N. Melnikov, and J. Schönwälder, “Flow Signatures
of Popular Applications,” ser. IFIP/IEEE International Symposium
on Integrated Network Management, IM, 2011, pp. 9–16. [Online].
Available: http://dx.doi.org/10.1109/INM.2011.5990668

[24] V. Bajpai, J. Schauer, and J. Schönwälder, “NFQL: A Tool for Querying
Network Flow Records,” ser. IFIP/IEEE International Symposium on
Integrated Network Management IM, 2013. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6573045

[25] B. Claise and B. Trammell, “Information Model for IP Flow
Information Export (IPFIX),” RFC 7012 (Proposed Standard), Internet
Engineering Task Force, Sep. 2013. [Online]. Available: http:
//www.ietf.org/rfc/rfc7012.txt

[26] B. Nickless, J. Navarro, and L. Winkler, “Combining Cisco
NetFlow Exports with Relational Database Technology for Usage
Statistics, Intrusion Detection, and Network Forensics,” ser. Conference
on Systems Administration (LISA), 2000, pp. 285–290. [Online].
Available: http://dl.acm.org/citation.cfm?id=1045502.1045520

[27] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and Issues in Data Stream Systems,” ser. ACM Symposium on
Principles of Database Systems PODS, 2002, pp. 1–16. [Online].
Available: http://doi.acm.org/10.1145/543613.543615

[28] C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk,
“Gigascope: A Stream Database for Network Applications,” ser. ACM
SIGMOD Conference on Management of Data, 2003, pp. 647–651.
[Online]. Available: http://doi.acm.org/10.1145/872757.872838

[29] M. Sullivan and A. Heybey, “Tribeca: A System for Managing
Large Databases of Network Traffic,” ser. USENIX Annual Technical
Conference, 1998. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1268256.1268258

[30] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture,” ser. USENIX Winter
Technical Conference, 1993, pp. 259–270. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267303.1267305

[31] D. Moore, K. Keys, R. Koga, E. Lagache, and K. C. Claffy,
“The CoralReef Software Suite as a Tool for System and Network
Administrators,” ser. Conference on Systems Administration LISA,
2001, pp. 133–144. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1047531.1047546

[32] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer,
“Building a Time Machine for Efficient Recording and Retrieval of
High-Volume Network Traffic,” ser. Internet Measurement Conference,
IMC, 2005, pp. 267–272. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1251086.1251109

[33] D. Plonka, “FlowScan: A Network Traffic Flow Reporting and
Visualization Tool,” ser. Conference on Systems Administration
LISA, 2000, pp. 305–317. [Online]. Available: http://www.usenix.org/
publications/library/proceedings/lisa2000/plonka.html

[34] L. Deri and S. Suin, “Effective Traffic Measurement Using ntop,”
ser. IEEE Communications Magazine, vol. 38, no. 5, May 2000, pp.
138–143. [Online]. Available: http://dx.doi.org/10.1109/35.841838

[35] A. Øslebø, “Stager A Web Based Application for Presenting Network
Statistics,” ser. IEEE/IFIP Network Operations and Management
Symposium, NOMS, 2006. [Online]. Available: http://dx.doi.org/10.
1109/NOMS.2006.1687613

[36] B. Trammell and E. Boschi, “Bidirectional Flow Export Using IP
Flow Information Export (IPFIX),” RFC 5103 (Proposed Standard),
Internet Engineering Task Force, Jan. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5103.txt

[37] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format,” RFC 7159 (Proposed Standard), Internet Engineering Task
Force, 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7159.txt

[38] “json-c - A JSON implementation in C.” https://github.com/json-c/
json-c, [Online; accessed 05-Aug-2016].

[39] B. Trammell, E. Boschi, L. Mark, T. Zseby, and A. Wagner,
“Specification of the IP Flow Information Export (IPFIX) File Format,”
RFC 5655 (Proposed Standard), Internet Engineering Task Force, Oct.
2009. [Online]. Available: http://www.ietf.org/rfc/rfc5655.txt

[40] “libfixbuf - An implementation of the IPFIX Protocol as a C library, for
building IPFIX Collecting and Exporting Processes.” http://tools.netsa.
cert.org/fixbuf, [Online; accessed 05-Aug-2016].

[41] P. Deutsch and J.-L. Gailly, “ZLIB Compressed Data Format
Specification version 3.3,” RFC 1950 (Informational), Internet
Engineering Task Force, May 1996. [Online]. Available:
http://www.ietf.org/rfc/rfc1950.txt

[42] “Lempel–Ziv–Oberhumer (LZO) - A lossless data compression al-
gorithm,” http://www.oberhumer.com/opensource/lzo, [Online; accessed
05-Aug-2016].

[43] “IP Flow Information Export (IPFIX) Entities,” http://www.iana.org/
assignments/ipfix/ipfix.xml, [Online; accessed 05-Aug-2016].

[44] “SimpleWeb - Traces,” https://www.simpleweb.org/wiki/index.php/
Traces, [Online; accessed 05-Aug-2016].

[45] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof:
a Call Graph Execution Profiler,” ser. Symposium on Compiler
Construction, SIGPLAN, 1982, pp. 120–126. [Online]. Available:
http://doi.acm.org/10.1145/800230.806987

[46] S. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer
Internet Telephony Protocol,” ser. IEEE International Conference on
Computer Communications, INFOCOM, 2006. [Online]. Available:
http://dx.doi.org/10.1109/INFOCOM.2006.312

[47] S. Cheshire and M. Krochmal, “NAT Port Mapping Protocol (NAT-
PMP),” RFC 6886 (Informational), Internet Engineering Task Force,
Apr. 2013. [Online]. Available: http://www.ietf.org/rfc/rfc6886.txt

[48] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH Compromise
Detection using NetFlow/IPFIX,” ser. Computer Communication
Review, vol. 44, no. 5, 2014, pp. 20–26. [Online]. Available:
http://doi.acm.org/10.1145/2677046.2677050

[49] P. Velan, “Practical experience with IPFIX flow collectors,”
ser. IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2013, pp. 1021–1026. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6573125

Vaibhav Bajpai is a Postdoctoral Researcher in
the Computer Networks and Distributed Systems
research group at Jacobs University Bremen, Ger-
many. He works with Prof. Dr. Jürgen Schönwälder.
His current research focuses on Internet performance
measurements using large-scale measurement plat-
forms such as SamKnows and RIPE Atlas. He is
interested in measuring IPv6 and access network per-
formance from end-user networks. He received his
PhD (2016) and Masters (2012) degrees in Computer
Science from Jacobs University Bremen, Germany

and his Bachelors degree (2009) in Computer Science and Engineering from
Uttar Pradesh Technical University, India. He worked as a systems engineer
at Infosys Technologies Limited, India for a year before coming to Germany.

Jürgen Schönwälder is Professor of Computer
Science at Jacobs University Bremen where he is
leading the Computer Networks and Distributed Sys-
tems research group. His research interests include
network management, distributed systems, network
measurements, embedded networked systems, and
network security. He is an active member of the
Internet Engineering Task Force (IETF). He has
edited more than 30 network management related
specifications and standards. He has been principal
investigator in several European research projects

(Emanics, Flamingo, Leone). He currently serves on the editorial boards of
the Springer Journal of Network and Systems Management and the Wiley
International Journal of Network Management. He is co-editor of the Network
and Service Management series of the IEEE Communications Magazine.

http://dx.doi.org/10.1007/978-3-642-04989-7_2
http://dx.doi.org/10.1007/978-3-642-13986-4_21
http://dx.doi.org/10.1109/INM.2011.5990668
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6573045
http://www.ietf.org/rfc/rfc7012.txt
http://www.ietf.org/rfc/rfc7012.txt
http://dl.acm.org/citation.cfm?id=1045502.1045520
http://doi.acm.org/10.1145/543613.543615
http://doi.acm.org/10.1145/872757.872838
http://dl.acm.org/citation.cfm?id=1268256.1268258
http://dl.acm.org/citation.cfm?id=1268256.1268258
http://dl.acm.org/citation.cfm?id=1267303.1267305
http://dl.acm.org/citation.cfm?id=1047531.1047546
http://dl.acm.org/citation.cfm?id=1047531.1047546
http://dl.acm.org/citation.cfm?id=1251086.1251109
http://dl.acm.org/citation.cfm?id=1251086.1251109
http://www.usenix.org/publications/library/proceedings/lisa2000/plonka.html
http://www.usenix.org/publications/library/proceedings/lisa2000/plonka.html
http://dx.doi.org/10.1109/35.841838
http://dx.doi.org/10.1109/NOMS.2006.1687613
http://dx.doi.org/10.1109/NOMS.2006.1687613
http://www.ietf.org/rfc/rfc5103.txt
http://www.ietf.org/rfc/rfc7159.txt
https://github.com/json-c/json-c
https://github.com/json-c/json-c
http://www.ietf.org/rfc/rfc5655.txt
http://tools.netsa.cert.org/fixbuf
http://tools.netsa.cert.org/fixbuf
http://www.ietf.org/rfc/rfc1950.txt
http://www.oberhumer.com/opensource/lzo
http://www.iana.org/assignments/ipfix/ipfix.xml
http://www.iana.org/assignments/ipfix/ipfix.xml
https://www.simpleweb.org/wiki/index.php/Traces
https://www.simpleweb.org/wiki/index.php/Traces
http://doi.acm.org/10.1145/800230.806987
http://dx.doi.org/10.1109/INFOCOM.2006.312
http://www.ietf.org/rfc/rfc6886.txt
http://doi.acm.org/10.1145/2677046.2677050
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6573125

	Introduction
	Background and Related Work
	Language Design
	Processing Pipeline
	Operators and Functions

	Implementation
	Front-End Parser
	JSON Intermediate Format
	I/O Processing
	Execution Workflow
	Further Performance Optimizations

	Performance Evaluation
	Applications
	Application Identification using Flow Signatures
	SSH Compromise Detection

	Conclusion
	Acknowledgements
	References
	Biographies
	Vaibhav Bajpai
	Jürgen Schönwälder

