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Abstract—QUIC was launched in 2013 with a goal to provide
reliable, connection-oriented and end-to-end encrypted transport
and is recently standardized in May 2021 by the Internet
Engineering Task Force (IETF). This work evaluates QUIC
performance over the web, cloud storage, and video workloads
and compares them to traditional TLS/TCP. To this end, we
have designed tests (quic_perf, tls_perf and video) and
conducted measurements from 2018 – 2021 using multiple
vantage points: an educational network, a high-bandwidth low-
RTT residential link in Germany and a low-bandwidth high-
RTT residential link in India. We target Alexa Top-1M for web
workloads and probe them towards the support for QUIC, TLS
1.2 and TLS 1.3. By measuring >5.7K websites that support
QUIC, we observe that QUIC has up to ≈140% lower mean
connection times than TLS 1.2/1.3 over TCP for low-bandwidth
and high-RTT networks. When comparing different versions of
QUIC, we observe that IETF QUIC connection times are slightly
better than different versions (Q050, Q046, Q044, Q043, Q039
and Q035) of gQUIC. For cloud storage workloads, we observe
that TLS 1.2 over TCP exhibits higher throughput for larger
file sizes (>20 MB up to 2 GB), while QUIC exhibits higher
throughput for smaller file sizes (≤20 MB) while downloading
files from Google Drive. At the same time, QUIC has much
higher CPU utilization than TLS 1.2 over TCP, almost double
while downloading a large file (200 MB) from Google Drive due
to in-kernel optimizations that benefit TCP. For video workloads,
we observe that QUIC is 534 ms faster than TLS 1.2 over TCP
from India (406 ms from Germany) in establishing a connection
to YouTube media servers. Although we witness that (similar
to cloud storage workloads) the overall download rate is higher
over TLS, QUIC still tends to depict better video content delivery
with reduced stall events and up to 50% lower stall durations
due to its lower latency overheads. To support reproducibility,
the developed tests and the collected data are made publicly
available to the community.

Index Terms—Content Delivery Networks (CDN), Transmis-
sion Control Protocol (TCP), Transport Layer Security (TLS),
QUIC, Internet Engineering Task Force (IETF), Application
Workloads.

I. INTRODUCTION

To meet the ever-growing low-latency demands, Google
proposed QUIC [1], a new transport protocol that is re-
cently standardized by the Internet Engineering Task Force
(IETF) [2]–[6]. The design of QUIC came with the experience
gathered from SPDY [7], which later got standardized as
HTTP/2 [8]. QUIC is a new protocol because deploying
extensions to TCP to support latency-sensitive applications
has seen diminishing returns over the years. This is due
to the ossification [9] of the Internet caused by intervening
middleboxes on the path that inhibit wider deployment of
extensions to TCP such as TCP Fast Open [10] or protocols

such as Stream Control Transmission Protocol (SCTP) [11]
and Multipath TCP [12].

QUIC uses UDP as a substrate and encrypts protocol
headers (and associated payload) to prevent middleboxes from
making modifications. QUIC is written in user-space (see: §II)
to allow rapid deployment of protocol updates that are not
tied to regular OS release cycles. Google Chrome and Google
apps on Android, when possible, allow interaction with Google
services (such as YouTube et al.) over QUIC. This has led to
increased adoption of QUIC to reach 8% of global Internet
traffic, with 4.6% of all websites being QUIC-capable [13]
as of July 2020. Google [1] reports that QUIC (using Q035,
deployed in 2016) has been able to reduce search latency by
8% for desktop users and 3.6% for mobile users.

For rapid testing of newly released versions, Piraux et.
al. [14] developed a test suite that interacts with public
QUIC servers and verifies the conformance with the IETF
specifications. However, due to the rapid development and
release cycle, performance studies analyzing QUIC quickly
become dated. There has been little work (see: §III) that
independently (of Google) evaluates the benefits of using
QUIC in uncontrolled settings and different networks using
more recent deployments of QUIC. Understanding protocol
behavior in realistic workloads and real network settings is
pertinent for the large-scale adoption and deployment of QUIC
over the Internet. In this paper, we close this research gap
by investigating the benefits of using QUIC for different
(web, cloud storage and video) workloads over traditional
TLS/TCP transport in different networks. The measurements
are performed using a VM and a Raspberry Pi from a high-
bandwidth, low-RTT residential link in Germany and a low-
bandwidth, high-RTT residential link in India.

The key contributions of this paper are two-fold: a) design
and implementation of quic_perf, tls_perf and video
tests (see: §IV) with QUIC support, which are open-sourced to
the community and b) findings reported from the analysis of
the collected dataset from 2018–2021 (also publicly released)
as summarized below –
tls_perf and quic_perf, active measurement tests

written in C. The tests evaluate the performance (latency
and throughput) of TLS/TCP and QUIC connections, respec-
tively. tls_perf test uses libcurl [15] underneath, while
quic_perf uses lsquic [16], an open-source implementa-
tion of QUIC used internally by LiteSpeed CDN. For measur-
ing latency, the tests connect to a given web-server from the
Alexa Top-1M websites list and capture various connection-
level metrics such as protocol version, DNS lookup time,
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connection times, time to first byte (TTFB) and download
time. We find that only 5.7K websites amongst Alexa Top-
1M actively support QUIC. For measuring throughput, we
uploaded files of different sizes (namely 1 KB to 2 GB) to
Google Drive and repeatedly downloaded them using the tests
with various QUIC versions and TLS 1.2 over TCP (since TLS
1.3 is not supported by Google Drive yet).
video_download, an active measurement test written in

C. The test downloads and mimics the playout of YouTube
videos on the command line. The test uses libcurl and
lsquic underneath to provide TLS/TCP and QUIC support.
We have added monitoring points in the video_download
test to measure connection establishment times, achievable
throughput and CPU utilization as key performance indicators
when downloading YouTube videos both over QUIC and TLS
1.2 over TCP (since TLS 1.3 is not supported by YouTube yet).
In video_streaming, we utilize an adaptive streaming
test-suite, VideoMon, that streams pre-defined videos from
YouTube over QUIC and TLS/TCP [17]. The test is written
in Python, and we run it in a container environment in a
university VM. To emulate real-world environments, we intro-
duce different packet losses over the links. Overall, we collect
several performance metrics that affect a user’s QoE while
streaming, e.g., startup delay, number of quality switches,
number and the duration of stalls. Our findings are –

Web Workloads – QUIC reports lower handshake times
than TLS 1.2 and 1.3 over TCP for both IPv4 and IPv6,
with IETF QUIC reporting ≈50% lower latency than gQUIC
versions for half of the samples over IPv6. Amongst the
gQUIC versions we tested, Q050 performs better than others.
However, QUIC exhibits diminishing returns in latency as
the connection state prolongs, with latency benefits declining
when TTFB and download times are compared with that of
TCP/TLS. We observe that Google CDN serves the largest
sample (≈ 68%) of (> 5.7K) websites that offer QUIC support
both over IPv4 and IPv6. Surprisingly, EdgeCast CDN seems
to offer the lowest handshake times over IPv4, although it does
not (yet) provide QUIC services over IPv6 (see: §V).

Cloud Storage Workloads – For downloading files from
Google Drive, we observe that the mean throughput of QUIC
is higher for small file sizes, but for larger file sizes (> 20 MB
up to 2 GB), TLS/TCP performs better. It is because, for
smaller file sizes, connection times and TTFB dominate the
total download time, while the gain diminishes as the file size
increases. In terms of resource utilization, QUIC has high CPU
usage as the in-kernel optimizations, such as large receive
offload (LRO) that currently benefit TCP, are not available
for UDP flows in the Linux kernel we tested (see: §VI).

Video Workloads – For video_download, QUIC pro-
vides much better improvements in India than in Germany
for connection times, with a reduction of 550 ms (410 ms in
Germany) compared to TLS 1.2 for half of the samples. The
overall download rate for TLS 1.2 is higher than QUIC (similar
observation to that of cloud storage workloads), and the down-
load rate for Q035 is higher than other QUIC versions for
both India and Germany. For YouTube video_streaming,
TLS/TCP incurs a larger startup delay compared to QUIC,
and the gap in the performance increases in a lossy network.

Despite lower overall download rate, QUIC has a better video
content delivery with reduced stall events and lower stall
durations due to its reduced latency overheads and better loss
recovery mechanism (see: §VII).

To encourage reproducibility [18] of our work, tls_perf,
quic_perf and video tests with the added QUIC support
are open-sourced and the collected dataset is publicly available
to the research community [19].

II. BACKGROUND

Google’s SPDY [7] improved latency by introducing fea-
tures like concurrent multiplexing of requests over a single
TCP connection, HTTP header compression, request priori-
tization, server push, and server hint. SPDY’s stream multi-
plexing feature gives it an edge over HTTP/1.1 [20]. How-
ever, being built on top of TCP, applications still experience
high handshake latency and head-of-line blocking (all SPDY
streams multiplexed on the same TCP connection will be
blocked by a lost or out-of-order packet). SPDY led to the
design of HTTP/2 [8], which was released in 2015. It differs
from SPDY in header compression. HTTP/2 has improved
performance over HTTP/1.1, and the performance benefits of
HTTP/2 over HTTP/1.1 were consistently high for a range
of network delays tested in [21]. However, HTTP/2 also
suffers from the TCP head-of-line blocking problem. The
biggest challenge in deploying changes to the transport layer
is middleboxes, as they tend to block any unfamiliar flow for
security reasons [22]. Several proposed TCP extensions such
as TCP Fast Open [10] or protocols such as SCTP [11] and
Multipath TCP [12], [23] have not seen wide deployment due
to the middleboxes blocking the flows. This led Google to
develop QUIC, a new transport protocol designed on top of
UDP. QUIC support was initially added to Chrome in June
2013 for the development team, and in early 2014 a tiny
number of users were allowed early access. Gradually the
number of users increased, and eventually, by January 2017,
QUIC was enabled for all users of Chrome and the Android
YouTube app [1]. Rüth et. al [24] studied QUIC usage in
the wild and found 161K out of 150M scanned websites
support QUIC. This adoption was attributed to support from
Google and Akamai. QUIC accounted for up to 9.1% of
the Internet traffic and Google’s egress traffic over QUIC
was 42.1%. The mobile YouTube increased Google’s egress
traffic over QUIC from 15% to 30%. Since using UDP as
a base promises Internet-scale deployability, many emerging
protocols are using UDP [25] (and even QUIC) as a substrate
to target specific application use-cases [26].

QUIC Features – QUIC is a user-space protocol that allows
for faster development and deployment. QUIC replaces the
traditional (TCP, TLS and HTTP/2) HTTP(S) stack. QUIC
employs flow control both at the connection level as well as
the stream level. While connection-level flow control restricts
the buffer size that the sender can exhaust aggregated over all
streams, stream-level flow control restricts the buffer size that
the sender can exhaust over a single stream.

QUIC provides improvements over TLS 1.2/1.3 over TCP
in terms of connection establishment times. TLS 1.2 and 1.3
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(over TCP) use 3-RTT and 2-RTT connection establishment
times, whereas QUIC uses 1-RTT for the first time connec-
tions. For the subsequent connections, the handshake times
are 2-RTT, 1-RTT and 0-RTT for TLS 1.2, 1.3 (over TCP)
and QUIC, respectively. This is because QUIC by design has
TLS negotiation built into its protocol, whereas TCP needs
to complete a transport handshake before initiating a TLS
handshake. Thus, QUIC is atleast 1-RTT faster than TLS/TCP
in terms of connection establishment times.

Another design feature of QUIC is stream multiplexing in
transport, allowing data to be delivered in order at the stream
level. Thus a lost packet affects only the streams whose data
it carried and not other streams. This is unlike TCP, which
requires packets to be delivered in order at the connection
level and can lead to a head-of-line (HoL) blocking problem.

QUIC’s loss-recovery mechanisms builds on and simplifies
TCP’s recovery mechanisms like TCP Selective Acknowledge-
ments (SACKs) [27], Fast Retransmit [28], Early Retrans-
mit [29], Recent Acknowledgement (RACK) [30], etc. QUIC
also has monotonically increasing packet numbers which help
in distinguishing original and retransmitted packets and a more
accurate RTT measurement. Also, unlike TCP, QUIC supports
multiple ACK ranges, which helps in speeding up recovery and
reducing spurious retransmissions. In addition, QUIC ACKs
are irrevocable, aiding in simpler implementation and reducing
the memory pressure on the sender [2] [3].

QUIC supports pluggable congestion control and is de-
signed to support different congestion control algorithms.
QUIC uses a modification of TCP NewReno [31] as a default
congestion control algorithm [3].

QUIC as an enabler for HTTP/3 – The IETF QUIC
working group was formed in Oct 2016, and QUIC was
standardized in May 2021. HTTP/3 [32] is the mapping of
HTTP semantics over QUIC, which takes full advantage of
QUIC’s stream-multiplexing capabilities. QUIC streams are
different from HTTP/2 streams and are independent of each
other, so HTTP/2 header compression cannot be used without
the issue of head-of-line blocking. Thus, a new header com-
pression algorithm QPACK [4] is used instead of HTTP/2 style
header compression, HPACK [33]. HTTP/3 also has server
push similar to HTTP/2. But unlike HTTP2, HTTP/3 has no
prioritization, which is considered to be too complicated [34].
This simplistic design and the advantages of faster handshakes
(courtesy QUIC) give HTTP/3 an edge over HTTP/2. A recent
study [35] shows an increased adoption of HTTP/3 over the
Internet indicating a promising future.

III. RELATED WORK

Early studies on QUIC [36]–[38] (measuring Q02X) have
become dated with time due to the drop in the amount of
incoming traffic that Google receives from clients using such
older versions (early 2016 or before) of QUIC. As such,
we focus the related work on more recent studies on QUIC.
Langley et al. [1] present the first large-scale measurements
of QUIC across its various versions. They design an extensive
test and evaluation environment for the development of gQUIC
using the knowledge and control over the Chrome browser

and its web services. They use measurements collected (late
2016 and early 2017) using Q035 to show that QUIC reduces
search and video latency by 8% (due to lower number of
handshakes) and video rebuffer rates by 18% (due to better
loss-recovery mechanisms) on an average for desktop users.
They show that these latency benefits vary by geography,
wherein higher latency benefits are visible to users in high-
RTT and lossy networks. Thus in this work, we specifically
measure from a developed (DE) and developing (IN) region to
verify and provide observations independent from Google to
this phenomenon. The control over client and server software,
combined with a large user base, allowed fast and regression-
free iterations of the protocol. Cook et al. [39] evaluate QUIC’s
page load time in local controlled testbed environments and
find that QUIC has improved performance over TCP in un-
stable networks (wireless/mobile) but not so much in stable
networks. Nepomuceno et al. [40] also used the page load
time metric to compare QUIC with HTTP/2 and TCP with
HTTP/1.1 and found QUIC to perform worse than TCP at
different values of RTT and packet loss ratios, contrary to
the related work and even our results (§V). This is because
they use the Caddy QUIC server, which does not perform
well [41]. In addition, they do not take bandwidth limitations
into account for their evaluations. Kakhki et al. [42] compared
QUIC and TCP in different emulated controlled environments
(desktop and mobile) and network settings and discussed the
performance improvement of different QUIC versions over
time. Yu et al. [43] discussed QUIC’s packet pacing mech-
anism as a tuning option but did not evaluate it in comparison
to TCP. For a fairer comparison, Wang et al. [44] implemented
QUIC in the Linux kernel and compared its performance with
TCP. Rüth et al. [24] show the usage of QUIC in the wild.
Their scans on the entire IPv4 address space showed 617.59K
QUIC-capable IPs and 161K out of 150M domains scanned
supported QUIC. Google and Akamai seemed to be the driving
force behind QUIC adoption, in which QUIC accounts for
2.6% to 9.1% of the Internet traffic depending on the vantage
point. Wolsing et al. [45] tune TCP parameters to improve
its performance and compare this tuned TCP version with
QUIC using the Mahimahi emulation framework. QUIC still
outperforms TCP due to its lower connection times and the
ability to reduce head-of-line blocking.

Lately, there has also been an interest in applying machine
learning (ML) techniques to classify QUIC traffic. For in-
stance, Mazhar et al. [46] propose an ML approach to monitor
quality of experience (QoE) metrics (such as startup delay
and rebuffering events) for encrypted video traffic delivered
over HTTPS and QUIC. There have also been proposals to
incorporate new features into QUIC. For instance, Coninck
et al. [47] propose to add multipath capabilities to QUIC.
Wu et al. [48] propose a learning-based multipath scheduler
for Multipath QUIC. Diego et al. [49] analyze QUIC traffic
from mobile end-user devices and show an increase in the
number of Android apps using QUIC. Perkins et al. [50]
propose a minimal set of extensions to QUIC to support real-
time media. Eggert [51] discusses the feasibility of deploying
QUIC directly on resource constraint IoT devices. Vaere et
al. [52] proposes to add a spin signal using three bits in
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Fig. 1: A sequence diagram of the tls_perf and
quic_perf tests and stages where metrics are collected.
The connection establishment time for QUIC, TCP/TLS 1.3
and TCP/TLS 1.2 are 1-RTT, 2-RTT and 3-RTT respectively.

the QUIC header to add explicit support for passive latency
measurements. Palmer et al. [53] proposes to add unreliable
streams to improve QoE of video streaming with QUIC.

There also has been work [42], [54] on measuring YouTube
video streaming over QUIC in a controlled environment by
emulating varying network conditions. For instance, Bhat
et al. [55] compare QoE using different Dynamic Adaptive
Streaming over HTTP (DASH) algorithms running on top
of QUIC by streaming videos from an Amazon EC2 server
instance. In [56], the authors primarily focus on QoE, specif-
ically measuring bitrate and quality switches. Seufert et al.
[57], [58] evaluate YouTube video streaming QoE metrics
such as video quality and stalls but find no evidence for
QoE improvements of QUIC over TCP. In [59], the authors
discuss the insensitivity and unfairness of QUIC protocol to
the varying network bandwidth and addition of other TCP
subflows on their HAS (HTTP-based Adaptive Streaming)
testbed. Rajiullah et al. [60] evaluate QUIC using the MON-
ROE platform and conclude that overall QUIC has a negligible
impact. Rüth et al. [61] performed a user study to evaluate
QUIC and TCP’s perceived performance for the user and
conclude that they are indistinguishable. In this work, we
measure different workloads in real-world settings targeting
Alexa Top-1M websites, Google Drive cloud storage, and
YouTube video downloads and streaming using QUIC and
TLS 1.2/1.3 over the Internet. All the related studies to this
work either measure QUIC performance in emulated settings
or using custom server deployments such as streaming its own
video from a DASH server installed on EC2 instances. Hence,
we consider them orthogonal to our work. To the best of our
knowledge, this is the first study to comprehensively evaluate
varying workloads, namely web, cloud storage, and video, over
more recent deployments of QUIC (Q035 and newer, including
IETF) using residential links at two different vantage points
(India and Germany) in an uncontrolled setting.

Version Features Release Date

Q035 Endpoints can set stream limit Jun 2016
Q039 Uses big endian format Apr 2017
Q043 PRIORITY frames Feb 2018
Q044 IETF header format Jun 2018
Q046 Q044 and demux bit Feb 2019
Q050 Header protection, initial obfuscators Aug 2019
IETF IETF Draft-24 [62] Nov 2019

TABLE I: QUIC protocol versions observed during the course
of our measurements. The release date is when the version was
introduced in the Chromium repository.

IV. METHODOLOGY

We use a Virtual Machine running Ubuntu 16.04.5 LTS
equipped with a 1Gbps LAN connection connected to the
Leibniz Supercomputing Centre (LRZ) network. We also use
a Raspberry Pi 3 Model B (RPi) with 1 GB RAM and 32
GB storage connected to a 100 Mbps line installed at a
residential location in Munich, Germany. We also installed
another RPi in Bhubaneswar, India, equipped with a 20
Mbps connection. Our VM-based setup represents a near-ideal
network environment, whereas the RPi-based setup allows us
to perform measurements in conventional residential networks.
We devised specific tests namely quic_perf, tls_perf
and video for our evaluation. The tests leverage LiteSpeed
lsquic [16] and libcurl [15] libraries to provide QUIC
and TLS/TCP support respectively.

The target websites for the measurements are taken from
[24], [63], which maintains a list of websites supporting QUIC
grouped by Alexa Top-1M list and IPv4 zmap scans. Our
tests connect to targeted web servers and measure application
and transport-level metrics of the established connection. From
our measurements, we find that only 5722 websites out of
Alexa Top-1M support QUIC. We target this set of websites
to analyze the performance of QUIC for web transport over
the Internet. We have also created Debian packages of our
tests using cmake and cpack to facilitate their installation
on a Raspbian environment running on a Raspberry Pi. We
publicly release the source code and Debian packages of these
tests to the community. The whole process can be orchestrated
by crontab, which runs the bash script every three hours.
To ensure that the previous test cycle is over, a test run is
limited with a timeout utility to complete the script within
one hour. The data was collected between November 2018
and July 2021. We make the data publicly available to the
community. We further describe the tests in detail below.

A. tls_perf and quic_perf

We developed a tls_perf test (written in C) to measure
TLS/TCP connections. The test uses libcurl [15] library,
which is used to configure and execute connections with
different parameters such as URL, port and timeout. libcurl
is also used for logging the metadata about the connection,
which can be accessed after the connection terminates.

Similarly, we also developed quic_perf test (written in
C) to measure QUIC performance. In order to add QUIC
support, we evaluated existing QUIC libraries [64], [65] and
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Fig. 2: A sequence diagram of the video_download test
and stages where metrics (handshake times, throughput, uti-
lization) are collected.

chose lsquic, an open-source QUIC client library [16] for
integration purposes. lsquic1 is developed and maintained
by LiteSpeed CDN with a promise for long term support
for QUIC development and has wide support of gQUIC
protocols currently deployed on the Internet and IETF QUIC
draft versions currently under development. Being written
in C, lsquic allows easy pluggability with our existing
measurement tools (such as the video tests that are written
in C).

Using lsquic, we added support for the gQUIC (Q035–
Q050) and IETF QUIC (ID-24) versions (Table I) in
quic_perf spanning two years (2018–2020) of QUIC devel-
opment. We also added features such as support for concurrent
streams, a new HPACK interface, a compression algorithm
that is used to compress HTTP headers in HTTP/2 [66],
support for 0-RTT, improved fall-back mechanism and finally
ls-qpack.

Figure 1 provides a sequence diagram of the operation of
both tests and metrics they collect in the process. Both the tests
connect to a given server on a given port. With each mea-
surement, they output various connection-level metrics such
as DNS lookup time, handshake time, TTFB, HTTP response
time and overall download time in the CSV format along
with the metadata associated with each measurement such
as timestamp, hostname, path, IP address, port and protocol
version. With these tests, we measure QUIC performance over
web (§V) and cloud storage (§VI) workloads.

1While developing the tools for our study, we also actively interacted with
the main developer of lsquic and have incorporated his feedback on the paper,
which supports active collaboration with this codebase.

B. video tests

video_download - We have developed a
video_download test (written in C) that downloads and
mimics the non-adaptive and step-down playout of YouTube
videos. This test aims to compare TLS/QUIC in their abilities
to deliver the best quality of video without disruptions.
The parameters of the video_download test are based
on our (and our collaborator’s) previous work [67], [68].
Figure 2 shows the operation of the video_download
test. The test takes a YouTube URL as input and scrapes the
fetched HTML page to extract the list of container formats,
available resolutions and URL locations of media servers.
The test then establishes two concurrent HTTP sessions
(or one HTTP session over a QUIC connection with two
streams) to fetch audio and video in the desired format and
resolution. The test ensures temporal synchronization between
the audio and video streams by de-muxing timestamps. The
test does not render content at any time, but it only reads the
container format to extract frame timestamps. The payload is
subsequently discarded. Ahsan et al. [67] have shown that
active measurement tests towards YouTube should run for
a minimum of 1 minute (with a recommended value of 3
minutes). The video_download test runs for 3 minutes.
We added QUIC support to the video_download test
using the lsquic library (similar to the quic_perf test).
The library is written in C similar to the video tests that
makes integration simpler. The video_download test
also uses curl for connection management when making
connections over TLS and lsquic when making connections
over QUIC. For instance, lsquic creates an HTTP session
over a QUIC connection using one or more streams. It
processes the incoming streams (performs packet reordering
and decryption) over the QUIC connection and hands over
the in-order byte stream to the video_download test for
further processing using callback events.
video_streaming - We evaluate the performance of

QUIC and TLS/TCP for adaptive YouTube video stream-
ing by performing active measurements using the VideoMon
framework [17]. VideoMon is an open-source containerized
toolchain that allows researchers to headlessly stream user-
defined YouTube videos and record key QoE metrics of
the playtime. We follow a similar measurement design as
video_download test, as we (i) randomly stream one
of the trending videos in the vantage points’ region and
(ii) stream every video for 3 minutes. As a result, our
video_streaming experiments provide a complementary
(and more realistic) viewpoint to our video_download
test as the video stream quality switches between different
encodings to adapt to changes in the underlying network.
Throughout our tests, we collect key QoE performance in-
dicators, e.g., startup delay, duration and number of video
stalls, buffer sizes and number (and resolutions) of quality
switches for different loss settings. We use Linux system
utility tc along with network emulator [69] to introduce
losses in the network. The utility adds a queue discipline
on the specified link, shaping the link-layer traffic based on
the configuration. The rule affects both ingress and egress
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Fig. 3: CDFs of connection times for QUIC and TCP/TLS
versions over IPv4 and IPv6 from an LRZ Network, Germany.
QUIC has lower connection times than TCP/TLS 1.2 and 1.3
for both IPv4 and IPv6.

traffic on the link. Together, our video tests provides
a well-rounded performance comparison between QUIC and
TCP/TLS when interacting with YouTube servers (see §VII).

V. WEB WORKLOADS

In this section we observe connection times, TTFB and
download times for IETF QUIC (ID-24), gQUIC (Q050–
Q035) (Table I) and TLS 1.2/1.3 over TCP for web workloads.
For QUIC, we measure the 1-RTT handshake, whereas for
TLS 1.3/1.2 over TCP, we measure 2-RTT and 3-RTT
respectively. We consider each measurement as a first-time
connection to the websites since we do not reuse any previous
session information. Since most of the websites we tested do
not support 0-RTT by default 2 3, the performance analysis
when connections are reused (QUIC 0-RTT and TLS 1.3
1-RTT) is left as a consideration for future work. The analysis
was performed using data collected by the VM and RPis
(2018–2020) towards the target list (>5.7K) of websites out
of Alexa Top-1M that supports QUIC (§IV). We also analyze
IPv4 and IPv6 separately as all the websites in our target list
do not support QUIC over IPv6 yet.

A. Connection Times
tls_perf uses CURLINFO_APPCONNECT_TIME (an

option that can be retrieved by calling curl_easy
_getinfo() on a libcurl handle) to measure the time
from start until the TLS connect/handshake to the remote
host is complete (Figure 1). It is to be noted, this time
also contains the DNS lookup time, which may be cached
on making repeated requests and would affect subsequent
measurements. For this purpose, we subtract the value of
CURLINFO_NAMELOOKUP_TIME, which is the time from
start until name resolution is complete. For QUIC, we measure
the time from the start of the handshake to the time of its

2https://cloud.google.com/blog/products/networking/tls-1-3-is-now-on-by-
default-for-google-cloud-services

3https://blog.cloudflare.com/even-faster-connection-establishment-with-
quic-0-rtt-resumption/
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Fig. 4: CDFs of connection times for all QUIC versions
combined categorized by serving AS over IPv4 and IPv6 as
observed from LRZ Network, Germany. EdgeCast performs
better than Google CDN over IPv4. Connection time at 50th

percentile (≈36 ms) closely match that of Google AS.

completion. lsquic provides quic_perf with a callback
on_hsk_done to capture when the handshake is complete
and whether or not the connection attempt was successful.
Similar to TLS/TCP, QUIC measurements also do not include
the DNS lookup time in the connection establishment times.

Figure 3 shows the CDF of connection times for different
versions of QUIC and TLS/TCP over IPv4 and IPv6 on a
high bandwidth LRZ Network, Germany. It can be observed
that QUIC has lower connection times than TLS 1.2 and
TLS 1.3. IETF QUIC ID-24 performs slightly better than
other gQUIC versions. QUIC versions have similar connection
times with a median value of ≈35 ms over IPv4. However,
over IPv6, IETF QUIC has lower connection times than any
other version by ≈50%. We also notice that Q050 has slightly
better performance than other gQUIC versions with ≈34 ms
median connection time. The slight changes in connection
times in different gQUIC versions may be attributed to func-
tional changes in the protocol [70]. We plan to investigate
the impact of such advances in the protocol on its overall
performance in future works. Meanwhile, TLS 1.2 and TLS
1.3 have median connection times of ≈71 ms and ≈62 ms,
respectively. Interestingly, we observe that TLS 1.2 performs
at par (and sometimes even better) than TLS 1.3, even though
theoretically it requires an additional RTT for connection
establishment. While analyzing our data, we found that the
websites with TLS 1.2 are slightly more widely deployed
by CDNs than TLS 1.3, and hence its connection times are
sometimes marginally better than TLS 1.3. We confirm this by
analyzing the connection establishment times of the websites
that support both TLS versions and TLS 1.3 consistently
outperforms TLS 1.2. The step-wise distribution in Figure 3
is due to different serving ASes in our target websites. We
discuss this aspect below.

Performance based on Serving AS – We compare the la-
tency measurements at the AS level and associate each website
to the destination AS (using the destination IP endpoint re-
turned by both tests) and then select the top five ASes ordered
by the number of websites with QUIC support for further
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Fig. 5: CDF of handshake times over QUIC and TLS as
observed from RPi in DE and IN. QUIC is 445 ms (270 ms
from DE) faster than TLS 1.2 and 409 ms (300 ms from DE)
faster than TLS 1.3 from IN at the 50th percentile.

analysis. These five ASes cover 4887/5722 target websites
resulting in a coverage of ≈85% with Google AS serving
an overwhelming majority of 3863 websites. We analyzed
the connection times of all QUIC versions (individually and
combined) categorized by serving AS over IPv4 and IPv6.
Figure 4 shows the CDFs of connection times over IPv4 and
IPv6 for all QUIC versions combined split by destination
AS as observed from LRZ Network, Germany. We can see
that EdgeCast AS performs better than Google AS, and these
two ASes perform much better than other ASes. EdgeCast
performs ≈50% better than Google for half of the samples,
while A2 Hosting exhibits the worst connection times. We also
find that EdgeCast and A2 Hostings do not support QUIC over
IPv6, while the connection times over IPv6 for Google, OVH
and IHCRU are less than ≈36 ms, ≈98 ms and ≈201 ms
respectively for half of the samples. Meanwhile, connection
times for all samples combined at the 50th percentile is ≈36
ms, which closely matches that of Google AS. Furthermore,
we investigate the performance of different QUIC versions
served within the same AS. We find that IETF QUIC generally
outperforms gQUIC within all ASes. However, we do not
observe much difference between different gQUIC versions,
especially within Google AS (plot not shown). We observe
differences in connection establishment time across different
ASes which likely attributes to the variations and the long tails
in Figure 3. This analysis highlights that QUIC’s performance
in the wild is widely affected by the CDN that serves the
content. As such, given Google AS has the largest number of
websites with QUIC support, the overall distribution for the
metrics largely mimics the performance as seen by Google
AS.

While the VM measurements allowed us to benchmark
the performance of the various QUIC versions in a well-
provisioned network, measurements from the Raspberry Pi
allows us to evaluate QUIC in a more conventional residential
network from different vantage points. To this end, we have
considered a 100 Mbps high-bandwidth, low-RTT residential
link in Germany (DE) and a 20 Mbps low-bandwidth and
high-RTT link in India (IN). Given the focus of this study
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Fig. 6: CDFs of time to first byte over QUIC and TLS
as observed from RPi in DE and IN. QUIC shows greater
improvement in low bandwidth, high RTT networks in IN.
QUIC is 497 ms faster than TLS 1.2 and 448 ms faster than
TLS 1.3 from IN at the 50th percentile.

to evaluate QUIC performance for different workloads in
an uncontrolled setting and its comparison with traditional
transports, henceforth we discuss the results from the RPi.
From here on, we show the best performing QUIC version for
increased clarity of results.

Figure 5 shows the CDF of connection times over QUIC
and TLS as observed from RPi in DE and IN. In comparison
to the results on the university VM (Figure 3), QUIC provides
larger benefits over the uncontrolled residential links. In a low-
bandwidth and high-RTT network (RPi IN), QUIC provides
≈175% and ≈125% improvement over TLS 1.2 and TLS 1.3
respectively at the 75th percentile. The large improvement is
due to QUIC utilizing 1-RTT connection time in comparison
to 3-RTT and 2-RTT for TLS 1.2 and TLS 1.3 respectively
in a high RTT and lossy network.

B. Time to First Byte

Time to First Byte (TTFB) is defined as the time taken
from initiating the user’s request to receiving the first byte
of the object from the server (Figure 1). For TCP/TLS, it
is the time between the start of TCP handshake and the
arrival of an HTTP response, which includes (i) comple-
tion of TCP and TLS handshake, (ii) sending of an HTTP
request, (iii) server processing the HTTP request and (iv)
receiving the response. To measure TTFB for TCP/TLS,
tls_perf uses CURLINFO_STARTTRANSFER_TIME pro-
vided by libcurl, which includes the pre-transfer com-
mands and negotiations and the time it takes for the server
to calculate the result. We remove the DNS lookup time as
before. For QUIC, quic_perf uses the callback function
on_read provided by lsquic_stream to process the
bytes received after the handshake is complete. This callback is
invoked for the first time when quic_perf receives the first
byte of the response from the server. TTFB is measured from
start to this time and is composed of the time taken for the
QUIC handshake, sending the HTTP GET request, processing
time at the server and receiving the response.
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Fig. 7: CDFs of download time over QUIC and TLS as
observed from RPi in DE and IN. QUIC shows greater
improvement in low bandwidth, high RTT networks in IN.
QUIC is 760 ms faster than TLS 1.2 and 640 ms faster than
TLS 1.3 from IN at the 50th percentile.

Figure 6 shows the CDF of TTFB for QUIC and TCP/TLS
from RPi in DE and IN. At 50th percentile TTFB measure-
ments over QUIC conducted from RPi, DE are ≈230 ms.
In contrast, for measurements conducted from RPi, India,
TTFB at 50th percentile is almost 3× (≈690 ms), with
≈70% and ≈63% improvement over TCP/TLS 1.2 and 1.3
respectively. Figure 6 reveals a diminishing gap between QUIC
and TLS/TCP (compared to Figure 5) indicating that QUIC
tends to lose some of its improvements gained by 1-RTT
connection establishment time. We observe that the gain of
1-RTT seems to have a smaller impact as the connection state
proceeds.

C. Total Download Time

To calculate the total download time, the tests send an
HTTP GET request to download the landing page (Fig-
ure 1). In the case of TLS/TCP, tls_perf uses option
CURLINFO_TOTAL_TIME provided by libcurl which re-
turns the time from start to when the response is complete
(i.e., FIN is sent). We remove the DNS resolution time
as before. For QUIC, quic_perf uses the callback on
_conn_closed. It is invoked by lsquic when all data
has been received and all the processes/connection with the
server is closed.

Figure 7 shows the CDF of download time for QUIC and
TCP/TLS from RPi in DE and IN. In a low-bandwidth and
high-RTT network (RPi IN), QUIC provides ≈62.5% and
≈60% improvement over TLS 1.2 and TLS 1.3 respectively
at 75th percentile with a download time of ≈780 ms. At 50th

percentile, download times over QUIC from RPi, DE are ≈270
ms. In contrast, for measurements conducted from RPi, India,
download times at 50th percentile are almost 2.6× (≈700 ms).
Since we only download the website’s landing page, the total
number of downloaded bytes is low (with a median value of ≈
40KB) and hence the shape of the CDF plot for total download
time is similar to TTFB in Figure 6.

Takeaway: We find that QUIC has lower handshake times
than TLS 1.2 and 1.3 over TCP for both IPv4 and IPv6 for
Web workloads. IETF QUIC ID-24 performs better than
all the gQUIC versions we tested. Google AS serves 68% of
the websites supporting QUIC. Consequently, QUIC’s con-
nection establishment times observed in our dataset closely
mimic that of Google CDN. QUIC’s lower connection times
over TCP/TLS show higher benefits in a low-bandwidth
high-RTT residential link in India when compared to a
high-bandwidth low-RTT link in Germany. However, the
gains by 1-RTT connection times diminish for TTFB and
download times.

VI. CLOUD STORAGE WORKLOADS

To evaluate the performance of QUIC in cloud storage
workloads, we download files of different sizes varying from
1KB to 2GB from Google Drive using tests quic_perf and
tls_perf. We observe throughput and CPU utilization when
downloading files over QUIC and TLS/TCP. The results shared
in this section are measured from the RPi over IPv4 in Ger-
many and were repeated 20 times. Google Drive currently does
not support TLS 1.3. As such, the performance comparison is
made between QUIC and TLS 1.2.

A. Throughput
We measure attained throughput by dividing the file size

by the total time it takes to download it. We upload files of
different sizes (namely 1KB, 2KB, 5KB, 1MB, 2MB, 5MB,
10MB, 20MB, 50MB, 100MB, 200MB, 500MB, 1GB and
2GB) and download them with various QUIC versions and
TLS 1.2. Usually, downloading large files from Google Drive
prompts a warning screen that requires manual confirmation.
We automate this step by submitting an HTTP GET request
using curl and grabbing the cookie, followed by a second
request appended with a confirm parameter in the URL.
For greater granularity, we used nettop [71]. This tool
intercepts all TCP/UDP packets using libpcap [72] and
extracts IP and port information. In another thread it parses
/proc/[pid]/fd/ to identify the inode of the socket
for a particular process, using this inode we can investigate
the /proc/net/tcp and /proc/net/udp files. These
files hold a dump of the TCP and UDP socket table, which
contains information about the local address and port used by
the socket. Using this, we assign each packet to a process and
thus monitor the network used by each process. We sample
the bandwidth usage every 500 ms. A benefit of nettop is
that we control the timestamps at which the throughput can
be measured to allow finer correlation with CPU utilization.
Figure 8a shows CDF of mean throughput for QUIC and
TCP/TLS 1.2 while downloading files of different sizes from
Google Drive consecutively. We observe that QUIC achieves
higher throughput than TCP for 55% of the measurements.
For the rest, TCP is better. We observed similar throughput
for different QUIC versions and hence do not show the differ-
entiation in the plot for clarity. To dig deeper, we plot the mean
throughput of QUIC and TCP for each file size (see Figure
8b). We observe that the mean throughput of TCP is higher
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Fig. 8: (a) CDF of mean throughput and (b) mean throughput when downloading files of different sizes from Google Drive over
QUIC and TCP/TLS, (c) CDF plot of throughput and CPU utilization for 200 MB file download. QUIC has higher throughput
than TCP for smaller file sizes but the trend reverses for higher file sizes. For achieving similar throughputs, QUIC utilizes
2× CPU resources compared to TCP.

than QUIC for larger file sizes (> 20 MB up to 2 GB), but for
smaller file sizes (≤ 20 MB), QUIC has higher throughput.
This is because, for smaller file sizes, the connection times
and TTFB dominate the total download times. QUIC’s lower
connection time leads to higher throughput for small file sizes.
However, connection times constitute only a tiny fraction of
the download time for large file sizes.

B. CPU Utilization

To measure the CPU utilization for a specific process we
wrote a custom script cpuutil [73] which parses the data
from /proc/[PID]/stat and /proc/stat. Assessing
CPU usage from /proc is a widely used methodology in
several recent research works [74], [75]. Our script records
the number of jiffies executed by the process and the CPU,
respectively. By sampling the same data again after a fixed
interval (500 ms), we can calculate the process’s CPU usage
over the sampling time. strace is used to record the time
spent in each system call, while the perf tool provides the
CPU usage profile.

Figure 8c shows the CPU utilization (%) and throughput
(Mbps) while downloading a 200 MB file from Google Drive.
Please note that both the metrics are sharing the x-axis.
It can be seen that QUIC utilizes twice as much CPU as
TCP to achieve similar throughput values. CPU utilization
for QUIC is ≈90% and remains consistent throughout the
progress. TLS/TCP CPU utilization is ≈50%. The high CPU
utilization of QUIC is because it is a user-space protocol built
on top of UDP. QUIC transmission is limited to a maximum
packet size of 1370 bytes for IPv4 and 1350 bytes for IPv6
to avoid packet fragmentation. On the other hand, TCP can
utilize larger packet sizes than UDP. This means that UDP
consumes higher resources for the same throughput in making
expensive system calls to sendmsg/recvmsg operation.
Thus, QUIC can achieve high performance only at the cost
of high CPU utilization. We visualize the results as a flame
graph in Figure 9, which allows us to identify the frequently
used code paths. Rectangles on the X-axis corresponds to a

stack frame, and the width of each rectangle represents its
frequency in the stacks. The Y-axis shows the depth of the
stack starting from 0 at the bottom. The top-level shows which
system call is executed on the CPU. Figure 9a and Figure 9b
shows the CPU utilization of quic_perf and tls_perf
for same Google Drive file download. We observe that the
width of the __sys_recvmsg and __sys_sendmsg for
quic_perf is quite large, indicating that the bulk of CPU
usage is in these paths. Also, we note that the stack for
the sendmsg is quite tall, showing many function calls to
send a UDP message. For our download using Google Drive,
QUIC spends most of its time (76.89%) on the recvmsg
system call (see: Table II). The Linux kernel supports Large
Receive Offload (LRO)/ Large Segmentation Offload (LSO)
for TCP, allowing incoming packets from a single stream to be
aggregated first before packets are pushed up the networking
stack. This greatly reduces the number of packets that have
to be processed at the upper layers [76]. The Linux kernel
(starting with v4.18) has recently added support for UDP
generic receive offload (GRO)/ generic segmentation offload
(GSO). Recent studies [77], [78] show that QUIC with generic
segmentation offload (GSO) enabled can be computationally
as efficient as TCP. However, Raspbian (used in this study) is
yet to incorporate this kernel release. Therefore, QUIC (UDP)
requires every packet to traverse up the stack. Note, QUIC
is designed for serving traffic to clients, a large proportion
of which may not always run a bleeding edge of the Linux
kernel. As such, evaluating QUIC on kernels that do not
yet support GRO/GSO is still useful for quantifying the
resource utilization overhead of QUIC compared to TLS/TCP.
A recent work [79] also measured the CPU usage breakdown
of different implementations of QUIC for packet I/O, crypto,
ACK, packet reordering and processing and their subsequent
effects on performance degradation. The key takeaway of their
results is that the majority share of QUIC’s CPU overhead is
due to packet I/O and crypto operations.

Takeaway: For cloud storage workloads, we observe that

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on December 11,2021 at 11:39:12 UTC from IEEE Xplore.  Restrictions apply. 



1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3134562, IEEE
Transactions on Network and Service Management

10

process_str..

i..

___sys_recvmsg

__sys_sendmsg

_aesni_c..

__..

process_incoming_packet

EVP_AEAD..

quic_perf

full_conn_ci_tick

lsquic_conn_d..
__sche..

dev_har..

ip_output

process_packet_in

ls..

ip_finish_ou..

send_packets_out

__pe..

udp_sendmsg

entry_SYSCALL_64_after_hwframe

read_handler

schedule

decrypt_pac..

__iee..

conn_decrypt_..
stream_di..

lsquic_enc_..
__libc_sendmsg

EVP_AEAD_C..

aead_aes..

entry_SYSCAL..

sys_recvmsg

__con..

fini..

parse_re..

lsquic_..
entry_SYSCALL_64_after..

fi.. sys_epoll_w..

[unknown]

ip_finish_ou..

process_regular_packet

inet_sendmsg

send_batch

ieee8..

lsquic_engine_packet_in

aes_aead_dec

ep_poll

proces..

co..

sport_packets_out
sock_recvmsg

schedul..

ip_local_out

dev_queue..

do_syscall_64

lsquic_engine_process_conns

sys_sendmsg

process_connections

lsquic..skb_c..

http_cli..

__sys_recvmsg

udp_send_skb

copy..

do_syscall_64
do_syscall_64

ip_send_skb

full_conn_ci_packet_in

skb_co..

sock_sendmsg
___sys_sendmsg

__libc_recvmsg

[libevent-2.1.so.6.0.2]

__dev_que..

skb_..

prog_process_conns

lsquic_st..

inet_recvmsg

epoll_wait

sch_dir..

process_..
schedul..

udp_recvmsg

(a) CPU flame graph of quic_perf showing code paths consuming maximum cycles.

_..

e.. [unknown]

l..

ip_output

skb_cop..

vfs_read

p..

__k..

sock_read_iter
_Z..

do_sys_poll

_..

iee..

entry_SYSCALL_64_after_hwframe

_..

_ZN4bssl18ssl..

tcp_transmit_skb

_aesni_ctr32_..

__vfs_read
new_sync_read

poll_schedule_timeout

se..

SSL_read
SSL_peek

schedule_hrtimeout_..
rw..

inet_recvmsg

__libc_read

sys_poll

_..

[unknown]

copy..

__poll

do_syscall_64

sk..

[..

sch_d..

ip_finish..

__dev_..

[..

dev_qu..

_ZN4b..

f..

__li..

de..

sk..

sock_recvmsg

dev_..

sys_read

ip_queue_xmit

tcp_cleanup_rbuf

o..

de..
__perf_e..

__schedule

[..
E..

_..

s..
d..

_ZL13ssl_read_implP6ssl_st

tcp_send_ack

ip_local_out

tls_perf

d..

ossl_recv

copy_..

entry_SYSCALL_64_after_hwframe

[..
_ZN4bssl17ssl..

finish_t..

ip_finish..

[..

schedule_hrtimeout_..

d..

schedule

_Z..

tcp_send_ack.part.39

tcp_recvmsg

s.. do_syscall_64

s..

(b) CPU flame graph of tls_perf showing code paths consuming maximum cycles.

Fig. 9: CPU usage of (a) QUIC and (b) TLS/TCP when downloading a large file from Google Drive. The width of the
_sys_recvmsg and _sys_sendmsg is quite large for quic_perf indicating a higher CPU utilization in these paths.

Index %time usecs/call calls time(s) syscall
1 76.89 24 80800 1.95 recv_msg
2 17.33 201 2191 0.44 epoll_wait
3 4.79 57 2141 0.12 send_msg

TABLE II: Top-3 system calls for QUIC while downloading
file from Google drive from strace.

the mean throughput of QUIC when downloading files from
Google Drive is higher for small file sizes (≤20 MB) but for
larger file sizes (>20 MB up to 2 GB), TCP’s throughput is
higher. It is because connection times and TTFB dominate
the total download time for smaller file sizes. This gain
diminishes as the file size increases. QUIC downloading a
large file from Google Drive has high CPU usage because
of the large number of send/recv calls.

VII. VIDEO WORKLOADS

We developed bash scripts to fetch the top 50 most popular
videos over the day using the YouTube API [80] and ran the
video tests toward the first video that succeeded. The API
takes the regional diversity of the popularity into account and
the video list is refreshed every day. In video_download,
the test is performed once over TLS and subsequently over
QUIC using multiple versions configurable on the command
line. In situations where the vantage point is dual-stacked, the
test runs over both IPv4 and IPv6. In video_streaming,

0.25

0.75

0.25

0.75

Fig. 10: CDF of handshake times towards YouTube website
over QUIC and TLS 1.2 from DE and IN. QUIC is 424 ms (221
ms from DE) faster than TLS from IN at the 50th percentile.

the test subsequently streams the YouTube video over a
headless Chrome browser using TLS/TCP, followed by QUIC.
Each streaming experiment lasts for 3 minutes and we perform
multiple runs throughout the day.

We performed memory profiling using the massif
(valgrind) heap analyzer to evaluate the dynamic total
memory consumption of the video test (§VII-A3). We
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Fig. 11: CDF of handshake times towards YouTube video
servers over QUIC and TLS 1.2. QUIC is 534 ms (406 ms
from DE) faster than TLS from IN at the 50th percentile.

observed a peak memory usage of <5MB when down-
loading a 4K video for 1 minute, thereby allowing the
video_download test to be deployed on a Raspberry Pi.
We perform the video_download test from the same two
vantage points to observe content delivery towards YouTube
over QUIC from both developed (high-bandwidth, low-RTT)
and developing (low-bandwidth, high-RTT) regions in a resi-
dential setting in Germany and India, respectively. Since these
vantage points are single-stacked, our results only contain
data on IPv4. YouTube currently does not support video
streaming over TLS 1.3 [81], [82] therefore we only compare
the performance between QUIC and TLS 1.2. Immediately
after the video_download test completes, we perform
paris-traceroute [83] using scamper [84] towards
the destination IP endpoints identified by the test. The IP
endpoints can either be media servers hosted within the CDN
or caches deployed by the ISP. We used the scamper
measurements to analyze the IP path lengths towards the
media servers streaming the video. The routers on the path
did not respond to UDP traceroutes when measured from
India (IN). Meanwhile, the measurements from Germany (DE)
revealed that it takes around 16 IP hops (3 AS hops) to
reach the media servers hosted at Google (AS15169). We
perform video_streaming tests on the university VM. To
emulate more realistic environments, we also examine video
streaming performance from YouTube servers with 1%, 5%
and 10% network losses. We use tc to introduce losses in
the network [69]. In the following analysis, we focus on the
latency, throughput and QoE metrics of video delivery and
YouTube streaming over QUIC and TLS/TCP.

A. video_download Performance
1) Connection Time: We define handshake time as the time

to establish a TLS 1.2 session over TCP (3-RTT) (Figure 2)
and the time to establish a QUIC connection (1-RTT). We did
not measure 0-RTT (with QUIC) and 2-RTT (with TLS 1.2)
for subsequent connections because we wanted to measure the
performance characteristics by considering each connection as
a new connection attempt.

0.25

0.75

0.25

0.75

Fig. 12: CDF of overall download rate from DE and IN.
The vertical markers indicate the advertised data rate of the
connection. QUIC in IN performs nearly similar to TLS.

Figure 10 shows the CDF of handshake times towards
the YouTube website. QUIC is 424 ms (221 ms from DE)
faster than TLS from IN in half of the samples. Figure 11
shows the CDF of handshake times toward media server
destinations serving the YouTube video. These destinations
can also include caches (whenever available) deployed inside
the ISP. We witness that from IN, QUIC is 534 ms (406 ms
from DE) faster in half of the samples than TLS and 2s (421
ms from DE) faster in 90% of the samples. These observations
are similar to the handshake times of the web workload
(§V) towards Google AS. When comparing between QUIC
versions, we did not observe a difference in handshake times
for half of the samples. At the 90th percentile, we observe
that different versions of QUIC are 2 ms apart when observed
from DE. While, Q035, the most widely deployed version of
QUIC [24] can establish handshakes faster than newer versions
of QUIC in 90% of the samples when observed from IN. This
observation also holds true for connections made towards the
YouTube website. For increased clarity of results, we show
only the best performing QUIC version in the results. Overall,
we witness that (besides DE) handshake times towards the
media server are usually less than the webserver over QUIC
and TLS. We suspect that this observation is due to ISP content
caches that cache [85] popular videos closer to the user.

2) Throughput: Figure 12 shows the overall download
rate, which includes the combined download rate of audio
and video chunks. It can be seen that the overall download
rate using TLS/TCP is higher compared with QUIC. When
measured from IN, QUIC performs similar (3.1% difference)
to TLS/TCP. While downloading files of different sizes (1KB
to 2GB) from Google Drive (which also supports QUIC)
(§VI-A), it was observed that for larger file sizes (20MB
or above, such as the videos we measured), the achieved
throughput over QUIC is lower than that of TLS/TCP. We
suspect that QUIC sustains latency benefits over TLS/TCP,
but tends to trade throughput with long flows as also witnessed
in previous studies [42]. We suspect that this observation is
partly due to kernel optimizations such as large receive offload
(LRO) that are available for the TCP stack.
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Fig. 13: CPU sampling of the video_download test with perf. Rectangles on the X-axis corresponds to a
stack frame and the width of the rectangle represents how often this function is present in the stack. We wit-
ness that _libc_recvmsg, _libc_sendmsg, packet_processing, futex_wait, epoll_wait represent
16.49%, 11.17%, 32.45%, 14.36%, 10.11% of the total sample respectively. The colors are used to distinguish frames.

3) CPU Utilization: Figure 13 shows the CPU profile
of the video_download test over QUIC performed using
perf. Rectangles on the X-axis corresponds to a stack frame
and the width of each rectangle represents its frequency in
the stacks. The Y-axis shows the depth of the stack starting
from 0 at the bottom. The top-level shows which system
call is executed on the CPU. QUIC, as a user-space proto-
col, allows for faster changes and deployment, but it makes
expensive system calls to send and receive UDP packets
(__sys_recvmsg and __sys_sendmsg). Additionally,
QUIC also suffers from a higher computational cost of ACK
processing than TCP primarily due to two reasons. First,
because ACK processing is done in user-space for QUIC
(resulting in more data copies in user-kernel boundary and
higher context switching), whereas TCP ACKs are handled in
the kernel. Second, TCP ACK is plain text, whereas QUIC
uses encrypted ACKs, further increasing the computational
cost. Moreover, the kernel maintains the TCP connection state
and reuses the state for all packets sent on the connection. As
an example, the kernel applies a firewall rule at the start of
the connection. However, the kernel has no connection state
for QUIC connections; such kernel operations are performed
for every QUIC packet [78]. As a result, most of the video
processing time is currently taken for sending and receiving
UDP packets, similar to observations when downloading large
files from Google Drive (§VI-B) and QUIC packet processing
(packet_processing), while the rest of the consider-
able workload is occupied by scheduling operations with
semaphores and events. Lower packet processing overhead
is seen in the CPU profile of the video_download test over
TCP/TLS. We omit the flame graph of TCP/TLS due to space
restrictions. In related work, [79] also discusses the CPU
usage breakdown of QUIC for packet I/O, crypto, ACK, packet
reordering and processing and their effects on the application
performance.

B. video_streaming Performance
1) Startup Delay: Startup delay is the time measured from

the video request to the start of the playback. This includes
the DNS resolution and handshake times as it is an application
layer metric. Figure 14 shows the CDF of the startup delay
at various loss percentages over QUIC and TLS/TCP. As ex-
pected, increasing the loss increases the startup delay for both
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Fig. 14: Distribution of startup delay over QUIC and TLS/TCP
1.2. QUIC experiences lower startup delays than TLS/TCP in
lossy networks.

protocols. The plot indicates that in non-lossy networks, both
TLS/TCP and QUIC show similar startup delay performances.
However, QUIC overtakes TLS/TCP by a large margin as soon
as the network starts to experience packet losses. At 5% loss,
QUIC is ≈ 40% faster than TLS/TCP at starting the YouTube
video at the 50th percentile. For a loss of 10%, QUIC takes at
most 7.65 ms to start video playback for half of the samples
compared to 8.59 ms for TLS/TCP. The lower startup delay of
QUIC in networks with packet losses can be attributed to the
lower connection times and better loss recovery mechanisms
compared to that of TLS/TCP [3].

2) Stall Rates and Stall Durations: A stall event is
triggered during playback when a frame is not received before
playout time. During stalls, video playback stops as the
playback buffer drops to zero seconds. We observed higher
stalls in networks with higher losses for both protocols (see:
Table III). In situations where a stall does occur, we also
measure the duration of the stall. Figure 15 shows the CDF of
the stall durations for QUIC and TLS/TCP for different losses.
We observe that at median, TLS/TCP exhibits upto 50% longer
stall durations compared to QUIC at 10% losses. As such,
even though higher throughput is achieved with TLS/TCP
(Figure 12), QUIC depicts a better video streaming experience
with reduced stalls and shorter stall durations. This behavior
is even more pronounced in lossy networks. We regard the
performance improvements of QUIC over TLS/TCP to its
improved and fine-grained loss recovery mechanisms, which
allows it to avoid retransmission ambiguities [3].
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Fig. 15: CDF of stall durations for QUIC and TLS/TCP.
Adaptive video streaming over QUIC experiences lower stall
durations than TLS/TCP, especially in loss-prone networks.

No Loss Loss 1% Loss 5% Loss 10%

#Stalls QUIC 2.0 2.0 2.0 2.08
TCP 2.0 2.0 1.96 2.2

#Switches QUIC 1.0 1.0 1.0 2.58
TCP 1.0 1.07 1.13 2.13

TABLE III: Effect of losses on the average number of stalls
and quality switches for QUIC and TLS/TCP.

3) Quality Switches: Table III shows the quality switches
for QUIC and TLS/TCP for different loss percentages. As
expected, with increasing packet loss, we experience more
stalls and more quality switches. The number of quality
switches is higher for QUIC in comparison to TCP for a high
loss network. In networks experiencing zero/low packet losses,
both QUIC and TCP use the highest quality of 720p and a
lowest of 480p. For higher losses (5-10%), the lowest quality
drops to 144p for both protocols. To understand the effect
of the number of quality switches on the QoE, we map the
number of quality switches to corresponding stall durations
in Figure 16. Note the clustering of data points in the low
stall duration and the low number of quality switches. In
zero/low packet losses, YouTube’s adaptive video streaming
mechanism maintains the optimal user QoE by upscaling the
video to the highest possible resolution and keeping stalls as
low as possible. However, as the packet losses in the network
increase, the client experiences many more quality switches,
irrespective of the transport protocol, adapting to network
changes. In this case, streaming over QUIC results in better
QoE than TLS/TCP since the average stall durations are much
lower (see Figure 15). This is likely an effect of QUIC’s
superior loss recovery mechanism compared to TCP as it
adopts and builds on approaches like F-RTO, early retransmit,
TCP-RACK algorithm, etc. [3].

Takeaway: We observe that QUIC provides significant im-
provements over TLS/TCP in low-bandwidth and high-RTT
regions for video downloads. QUIC handshakes towards
YouTube media servers offer an improvement of 534 ms
(IN) and 406 ms (DE) when compared with TLS/TCP. We
also observe that the overall download rate for TLS/TCP
is higher than QUIC partly due to kernel optimizations
such as LRO available for the TCP stack. QUIC provides a
better video streaming experience with a lesser number and
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Fig. 16: Correlation between number of quality switches and
stall duration (seconds). Y-axis is clipped to 15 s to improve
readability.

duration of stall events compared to TLS/TCP. We observe
that TLS/TCP exhibits up to 50% longer stall durations
compared to QUIC at 50th percentile for high loss networks.

VIII. IMPLICATIONS FOR NETWORK MANAGEMENT

The conventional methods used by ISPs to measure per-
formance by passively monitoring the network will not work
with QUIC anymore since the flows are end-to-end encrypted.
Although there are preliminary studies on how to passively
measure the performance of encrypted QUIC flows, a stable
ground truth is still needed for validation, which the paper
provides by measuring QUIC performance of different work-
loads from the endpoint of the client (independently) toward
many content delivery networks (CDNs) that currently support
QUIC. We believe that this study is of prime relevance to
three parties. Firstly, our analysis can be utilized by network
and content providers who are waiting to adopt QUIC and
would want to understand its behavior in different network
conditions. Secondly, this study can be of interest to the
IETF as QUIC has been very recently standardized [2] and
its performance behavior is of significant interest to the
community. Our study helps provide an empirical grounding
on the performance of QUIC in the real world. Finally, our
work is of importance for the networking research community
who would value the tools and datasets we open-source and
make publicly available to further extend the understanding of
this emerging protocol over the Internet.

IX. LIMITATIONS AND FUTURE WORK

In this work, we evaluated gQUIC (Q035-Q050) and IETF
QUIC (ID-24). We plan to continue the development of the
tests to track both minor and significant changes in QUIC in
the future. Observations on QUIC presented in this study are
a function of the lsquic implementation, which the tests
use underneath. The different implementations of QUIC can
lead to different results. There has been some preliminary
work understanding the behavior of different implementations
in this space, and we refer the inclined reader to [86]. The
IETF is discussing the need for a standardized QUIC API that
would enable applications to plug different implementations.
This will enable repeating the experiments with the tests across
implementations in the future.
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The measurements are performed from a limited sample of
(diverse) vantage points. However, the goal of this work is
not to sample a large number of clients, but to sample a large
number of destinations and different application workloads
covering short-, long- flows, resource utilization. Our aim
is to extend our measurements to large-scale measurement
platforms such as SamKnows and CAIDA Ark. Such platforms
utilize heavily constrained hardware probes that are deployed
at users’ homes. We have confirmed that our tests are possible
to deploy on such environments.

X. CONCLUSION

We measured and analyzed different QUIC versions over
both short flows and long flows to mimic the web, cloud
storage and video workloads. We developed specific tests
quic_perf, tls_perf and video for such evaluation.
Using these tests, we conducted our measurements from
different vantage points that allowed us to compare the benefits
of using QUIC in a lossy residential versus a well-provisioned
university network. We observed that QUIC performs well for
short flows (such as small file downloads, browsing websites)
as the total download time is dominated by connection time.
However, since QUIC is built on the top of UDP, it exhibits
high CPU utilization due to a high number of send/recv
function calls that reduce the throughput over long flows
(such as large file downloads, streaming YouTube videos).
QUIC handshakes towards YouTube media servers provide an
improvement of ≈90% for both IN and DE when compared
with TLS. This reduces the startup delay over QUIC by 1s
for high loss (10%) networks. Even though the download rate
is lower over QUIC, the lower latency leads to better video
content delivery due to reduced stall rates and stall durations
when streaming videos.
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