The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research

SIGCOMM 2019 Beijing, China

SIGCOMM Computer Communication Review January 2019 (Editorial) https://doi.org/10.1145/3314212.3314217 Terminology Best Practises Further Reading State of Reproducibility

Reference

- Vaibhav Bajpai Technische Universität München
- Anna Brunstrom Karlstad University
- Anja Feldmann MPI f
 ür Informatik
- Wolfgang Kellerer Technische Universität München
- Aiko Pras University of Twente
- Henning Schulzrinne Columbia University
- Georgios Smaragdakis TU Berlin
- Matthias Wählisch Freie Universität Berlin
- Klaus Wehrle RWTH Aachen

August 21, 2019

Motivation

- Reproducibility is the cornerstone of the scientific process.
- > *Yet*, lack of reproducibility exists an ongoing problem. For instance:

A survey [1] of MANET simulation studies (2000-2005) found only 15% papers were repeatable. A study [2] (2009) explored 134 TOIP papers and found few release code (9%) and data (33%). A study [3] (2016) examined 601 ACM papers and found only 32% to be repeatable.

We believe,

- There is a need to inculcate the importance of reproducibility at an early-stage.
- A beginners guide that documents current best practises helps students embrace reproducibility.

Motivation Terminology Best Practises Further Reading State of Reproducibility Summary References

Terminology

ACM Terminology [4]

- **Repeatability.** *same team, same experimental setup.*
- **Replicability.** *different team, same experimental setup.*
- Reproducibility. different team, different experimental setup.

should (ideally) only require general knowledge of the discipline + paper + artefacts.

Goals and Principles

- supports continuation and building on earlier work of own and others.
- avoids reverse-engineering previously written code.
- ▶ increases trust in experimental data gathered by own and others.
- reduces likelyhood of making mistakes (or at least easier to find).

Motivation Terminology Best Practises Further Readin State of Reproducibility Summary References

Best Practises

Terminology

Best Practises

Further Reading

State of Reproducibility

Summary

Best Practises

- Problem Formulation and Design
- Documentation
- Experimentation and Data Collection
- ▶ Handling Data

Terminology Best Practises

Further Reading

State of Reproducibility

Summary

Best Practises | Problem Formulation and Design

Hypothesize. *think first, run later.*

- Formulate hypothesis \rightarrow design \rightarrow conduct experiment \rightarrow check the hypothesis.
- Double check results to spot errors (with advisor, teammates)

Plan and solicit early feedback

- Visualisations help explain results and spot anomalies (notches, spikes, gaps).
- Explore the parameter space (ANOVA). Get feedback often.

Iterate

- Record steps and automate them (scripts, Makefiles).
- Account for factors (time of day) that may affect one-time measurments.

Factor dynamism

Expect that operational systems would not remain static during experimentation.

Terminology Best Practises Further Readin State of Reproducibility Summary References

Best Practises | Documentation

Record the experiment

- Use lab notebooks. Record all steps and observations (mistakes too).
- Avoid temptation to skip documentating code for later. Research artefacts are reused.

Treat metadata as data

How data was created, what it contains, where it's documented, how to recreate it.

Use a version control system

- VCS helps identify source of change in measured results.
- Create publishable results by creating release of your software.

Keep regular backups

Data management plans for research grants require artefacts to be preserved for years.

Terminology Best Practises Further Readin State of Reproducibilit Summary References

Best Practises | Experimentation and Data Collection

Validate and scale. start small, then expand.

- Starting small helps readily predict results and verify tools.
- Use test-cases as sanity during regression and scaling up of components.

Do not reinvent the wheel. do one thing, and one thing well.

- Check whether the tool that solves the problem at hand, already exists.
- Creating your own tool, also commits you into maintaining it.

Monitor your experiment

Monitor your operational system to avoid common problems: disk out of space, machine reboots, overwritten logs, wrong permissions, network failures. Terminology Best Practises Further Readin State of Reproducibility Summary References

Best Practises | Handling Data

Data privacy, data anonymization and ethics

- Never try to de-anonymize data (unethical, discourages others from making data available)
- Think about privacy concerns when releasing data (consider anonymization)
- Seek consultation (team members, seniors, ethics panels, IRB) when in doubt.
- Refer to published community ethics guidelines [5, 6]

Data integrity. account for observation bias.

Evaluate the performance complexity of the system based on its intended use-case.

Licensing and giving credit

- Consult with everyone in the team to agree on how code intends to be licensed.:
- Some licenses require modifications to be made publicly available.
- Some licenses [7, 8] mandate giving credit to sources

Terminology Best Practises Further Readin State of Reproducibility Summary

Further Reading | What should be Documented?

Guidelines for specific research methodologies:

- Simulations
- Systems Prototyping and Evaluations
- Human Subject and Subjective Experiments
- Real-world Measurements

Please refer to the paper [9] for details

A must read for graduate students before starting on a related project!

Motivation Terminology Best Practises Further Reading State of Reproducibility Summary References

Motivation Terminology Best Practises Further Reading State of

Reproducibility

Summary

References

State of Reproducibility

Past, Present, and Future

State of Reproducibility | Reproducibility Course and SIGCOMM Workshops

2012 Stanford's reproducibility course.

https://reproducingnetworkresearch.wordpress.com

- 2017 CCR article reporting past 5 years of experience from running the course [10]
 - > 200 students, 40 networking papers, 3 weeks duration, working in pairs

Learning Networking by Reproducing Research Results

Lisa Yan Stanford University yanlisa@stanford.edu Nick McKeown Stanford University nickm@stanford.edu

2017 SIGCOMM Workshop on Reproducibility [11] (a related workshop was held in 2003 [12])

Thoughts and Recommendations from the ACM SIGCOMM 2017 Reproducibility Workshop

Damien Saucez Univresité Côte d'Azur, Inria, France damien.saucez®inris.fr Luigi lannone Telecom Paristech, France luigi.iannone@telecom-paristech.fr Motivation Terminology Best Practises Further Reading State of Reproducibility

Summary

State of Reproducibility | Artefacts Evaluation and Reproducibility Track

2017 CCR article on artefacts availability in accepted papers [10]

- SIGCOMM, CoNEXT, IMC, ICN conferences
- ► 49/137 responses from authors, 35.8%
- Webpage: https://artefacts.cm.in.tum.de/2017

2018 SIGCOMM Artifacts Evaluation Committee (AEC) [13].

▶ 32 accepted papers were submitted, 28 were badged.

2018 CoNEXT badged accepted papers (will be continued in 2019).

▶ 14/32 accepted papers submitted for evaluation, 12 papers badged.

2019 IMC reproducibility track [14] solicits work that reproduces previous work.

Motivation Terminology Best Practises Further Reading State of Reproducibility

Summary

State of Reproducibility | Dagstuhl Seminar #18412

2018 Dagstuhl seminar #18412 [15] on Encouraging Reproducibility in Scientific Internet Research

- New publication strategies [16]
- Incentives and ontology for reproducibility
- Reproducibility in post-publication phase
- Reproducibility track for IMC
- Guidelines for students [9] and reviewers [17]

The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research

Vaibhav Bajpai TU Munich bajpaiv@in.tum.de

Wolfgang Kellerer TU Munich wolfgang.kellerer@tum.de

Georgios Smaragdakis TU Berlin georgios@inet.tu-berlin.de Anna Brunstrom Karlstad University anna.brunstrom@kau.se

Aiko Pras University of Twente a.pras@utwente.nl

Matthias Wählisch Freie Universität Berlin m.waehlisch@fu-berlin.de Anja Feldmann MPI for Informatics anja@mpi-inf.mpg.de

Henning Schulzrinne Columbia University hgs@cs.columbia.edu

Klaus Wehrle RWTH Aachen University klaus@comsys.rwth-aachen.de

Report from Dagstuhl Seminar 18412 Encouraging Reproducibility in Scientific Research of the Internet

Edited by Vaibhav Bajpai¹, Olivier Bonaventure², Kimberly Claffy³, and Daniel Karrenberg⁴

Motivation Terminology Best Practises Further Reading State of Reproducibility

Summary

Best Practises

Problem Formulation and Design Documentation Experimentation and Data Collection Handling Data

Guidelines for Specific Methodologies

Simulations Systems Prototyping and Evaluations Human Subject and Subjective Experiments Real-world Measurements

We hope the guide can serve as a key resource for graduate students and helps improve the state of reproducibility in experimental networking research.

www.vaibhavbajpai.com

bajpaiv@in.tum.de | @bajpaivaibhav

Motivation Terminology Best Practises Further Reading State of Reproducibility Summary

References

- S. Kurkowski, T. Camp, and M. Colagrosso, "MANET simulation studies: The incredibles," *Mobile Computing and Communications Review*, vol. 9, no. 4, pp. 50–61, 2005. [Online]. Available: http://doi.acm.org/10.1145/1096166.1096174
- [2] P. Vandewalle, J. Kovacevic, and M. Vetterli, "Reproducible Research in Signal Processing," *IEEE Signal Processing Magazine*, vol. 26, no. 3, pp. 37–47, May 2009.
- [3] C. S. Collberg and T. A. Proebsting, "Repeatability in computer systems research," *Communications of the ACM*, vol. 59, no. 3, pp. 62–69, 2016. [Online]. Available: http://doi.acm.org/10.1145/2812803
- [4] ACM. (2016) Artifact review and badging. [Online]. Available: https://www.acm.org/publications/policies/artifact-review-badging
- [5] David Dittrich and Erin Kenneally. (2012) The Menlo Report: Ethical Principles Guiding Information and Communication Technology Research. [Online]. Available: https://www.dhs.gov/publication/csd-menlo-report
- [6] Michael Bailey, David Dittrich, and Erin Kenneally. (2013) Applying Ethical Principles to Information and Communication Technology Re- search: A Companion to the Menlo Report. [Online]. Available: https://www.dhs.gov/publication/csd-menlo-companion
- [7] Open Source Initiative. (2018) Licenses and Standards. [Online]. Available: https://opensource.org/licenses
- [8] Creative commons. [Online]. Available: https://creativecommons.org

- [9] V. Bajpai, A. Brunström, A. Feldmann, W. Kellerer, A. Pras, H. Schulzrinne, G. Smaragdakis, M. Wählisch, and K. Wehrle, "The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research," *Computer Communication Review*, vol. 49, no. 1, pp. 24–30, 2019. [Online]. Available: https://doi.org/10.1145/3314212.3314217
- [10] L. Yan and N. McKeown, "Learning networking by reproducing research results," *Computer Communication Review*, vol. 47, no. 2, pp. 19–26, 2017. [Online]. Available: https://doi.org/10.1145/3089262.3089266
- [11] D. Saucez and L. Iannone, "Thoughts and Recommendations from the ACM SIGCOMM 2017 Reproducibility Workshop," Computer Communication Review, vol. 48, no. 1, pp. 70–74, 2018. [Online]. Available. https://doi.org/10.1145/321185.3211863
- [12] Workshop on Models, Methods and Tools for Reproducible Network Research (MoMeTools). [Online]. Available: https: //conferences.sigcomm.org/sigcomm/2003/workshop/mometools
- [13] D. Saucez, L. Iannone, and O. Bonaventure, "Evaluating the artifacts of SIGCOMM papers," *Computer Communication Review*, vol. 49, no. 2, pp. 44–47, 2019. [Online]. Available: https://doi.org/10.1145/3336937.3336944
- [14] Reproducibility Track at IMC 2019. [Online]. Available: https://conferences.sigcomm.org/imc/2019/call-for-posters
- [15] V. Bajpai, O. Bonaventure, K. C. Claffy, and D. Karrenberg, "Encouraging Reproducibility in Scientific Research of the Internet

Motivation Terminology Best Practises Further Reading State of Reproducibility

Summary

(Dagstuhl Seminar 18412)," *Dagstuhl Reports*, vol. 8, no. 10, pp. 41–62, 2018. [Online]. Available: https://doi.org/10.4230/DagRep.8.10.41

[16] A. Dainotti, R. Holz, M. Kühlewind, A. Lutu, J. Sommers, and B. Trammell, "Open collaborative hyperpapers: a call to action," Computer Communication Review, vol. 49, no. 1, pp. 31–33, 2019. [Online]. Available: https://doi.org/10.1145/3314212.3314218

[17] D. K. D. S. Olivier Bonaventure, Luigi Iannone. (2018) ACM SIGCOMM Artefact Review Form. [Online]. Available: https://goo.gl/JjXgjw

Motivation Terminology Best Practises Further Reading State of Reproducibility Summary