Measuring the Feasibility of Teleoperated Driving in Mobile Networks

Stefan Neumeier, Ermias Andargie Walelgne, Vaibhav Bajpai, Jörg Ott, Christian Facchi

20.06.19

TMA 2019
Outline

- Introduction
- Requirements
- Setup
- Dataset + Results
- Conclusion
What is Teleoperated Driving

- **Remote control of Vehicles**

Why Teleoperated Driving?

- **Vehicles may not solve all situations autonomously**
  - Until Level 5 (fully autonomous vehicles)
  - Supporting of non autonomous features

- **From Level 5**
  - Software/Hardware failures
  - Exceptional situations

- **Use Cases**
  - Emergency Support
  - Valet Parking Service
  - Etc.
Challenges in Teleoperated Driving

- Teleoperated Driving needs Cellular Network
- Bandwidth
  - Variable
  - Probably Low
- Latency
  - Variable
  - Probably High
- Jitter
- No Connection
- \(\rightarrow\) Leads to problematic situations
Requirements for Teleoperated Driving

- **Downlink:**
  - 0.25 Mbit/s
  - Based on: Steering command all 10 ms

- **Uplink:**
  - Min. 3 MBit/s
  - Based on: Resolution 640 x 480; three 90° cameras (front: two, back: one)

- **Latency:**
  - Max. 250 ms
  - 300 ms tolerable latency based on user study (- Time for Sensors/Actuators of 50 ms)
  - Jitter max 150 ms
Measurement Setup

- **Hardware**
  - Lenovo B
  - SierraWireless

- **Software**
  - Ping
  - Netradar
    - Smartphone measurement tool
  - Iperf3

- **Two setups for easy use and comparison**
  - Availability of test vehicle
  - Easiness in using
Dataset

- **Measurement Period**
  - May 2017 – end of December 2017

- **About 5200 km and 78 h of driving**
  - Ping: 2180 km
  - Netradar: 2670 km
  - SierraWireless: 354 km
Results - Latency

- **Ping**
  - Median latency of about 55.14 ms
  - 96% below 250 ms
  - Median jitter of about 10 ms
  - 5% above 150 ms

- **Netradar**
  - UDP latency
  - Median latency of about 55 ms
  - 96% below 250 ms
  - Median jitter of about 2 ms
  - 4% above 150 ms
Results – Downlink Throughput

- **Netradar**
  - TCP throughput
  - Median of about 17 MBit/s
  - 95 % above 0.25 MBit/s
  - Median variance of 0.15 MBit/s

- **SierraWireless**
  - Iperf3 throughput
  - Median of about 28 Mbit/s
  - 99 % above 0.25 Mbit/s
  - Median variance of 0.41 MBit/s
Results – Uplink Throughput

- **Netradar**
  - Median of about 12 MBit/s
  - 87 % above 3 MBit/s
  - Median variance about 0.07 MBit/s

- **SierraWireless**
  - Median of about 18 Mbit/s
  - 98 % above 3 Mbit/s
  - Median variance about 0.07 MBit/s
Results – Identical Routes

- **Latency - Ping and Netradar**
  - Ping: about 57 ms
  - Netradar: about 55 ms
  → Results are roughly comparable with same Hardware

- **Throughput – Netradar and SierraWireless**
  - Downlink: 15 MBit/s (Netradar) ↔ 32 MBit/s (SierraWireless)
  - Uplink: 13 MBit/s (Netradar) ↔ 20 MBit/s (SierraWireless)
  → Most likely attributed to the two antennas
Results – Different Scenarios

- **Handover**
  - Latency and Throughput get worse if changing cellular technology (e.g. LTE → 3G)
  - Median decrease to 15 % of original speed

- **Speed**
  - 0 – 150 km/h
  - No influence on latency or throughput

- **Signal-Strength**
  - Better Signal-Strength, higher throughput
  - Latency: No tendency can be seen

- **Distance to base station**
  - No influence can be seen
Results – Whitelisting as possible Approach

- **Whitelisting**: Teleoperated Driving only in areas that provide sufficient network performance

![Graphs showing latency, downlink, and uplink performance over measurements.](image-url)
Limitations

- Amount and type of measurements
- Changes in network are likely to occur
- Results reflect client's perspective
- Network is treated as Black-Box
- No information on how busy cells were

→ Nevertheless, results can be used to get a first impression if Teleoperated Driving could work at all with contemporary mobile networks.
Conclusion

- **Teleoperated Driving may be feasible with contemporary mobile networks**
- **Whitelisting can work**
- **However, Teleoperated Driving can not be used in all situations**
- **Handover can have negative influence**
- **Signal strength can influence throughput**
- **Fluctuation of latency can increase with far vehicles (e.g. more than 250 km away of operator)**
- **Future work has to deal with limitations, e.g. improve the whitelisting**

- If you have further questions: stefan.neumeier@thi.de