
F (v2)
A complete system integration of

stream-based IP flow-record querier

Vaibhav Bajpai
(Interim) Masters Thesis Presentation

Computer Networks and Distributed Systems
School of Engineering and Sciences

Jacobs University Bremen
Bremen, Germany

April 2012

Overview

an in-house flow-query language, designed to
cap flow-record traces to their full potential.

Network Flow-Query Language (NFQL)

prototype implementation of NFQL.
F (previously Flowy)

18 flowy

3.1.3 Parsers and Statements

The parser module holds definitions for the lexer and parser. The
statements when parsed are implicitly converted into instances of
classes defined in the statement module. The instances contain meta-
information about the parsed statement such as the values, line num-
bers and sub-statements (if any).

3.2 processing pipeline

Design of a Stream-Based IP Flow Record Query Language 19

of an initial record (a query) followed by one or more responses. Its most basic
use is to group records into both sides of a bidirectional session, such as a HTTP
request.

3 Stream-Based Flow Query Language

Our framework for IP flow filtering follows a stream-oriented approach — it
consists of a number of processing elements or operators, which are connected
with each other via pipes. Each element receives an input stream, performs some
sort of operation on it (filtering, aggregation etc.) and the output stream is piped
to the next element. Figure 1 shows the framework and in the following sections
we describe each of its elements. A complete definition of the syntax and the
semantics of the elements can be found in [19]. Section 4 provides an example
illustrating the usage of the primitives of the stream-based flow query language.
The names of the filtering primitives in our language are closely linked to the
flow record attributes in RFC 5102 [18].

Fig. 1. IP flow filtering framework

3.1 Splitter

The splitter is the simplest operator in the IP flow filtering framework. It
takes the input stream of flow records and copies them on each output stream
without performing any changes on them. There is one input branch and several
output branches for a splitter.

3.2 Filter

The filter operator takes a stream of flow records as input and copies to its
output stream only the flow records that match the filtering rules. The flow
records, which do not match the filtering rules are dropped. The filter op-
erator performs absolute filtering, it compares the flow attributes of the input

Figure 7: Flowy: Processing Pipeline [13]

The pipeline consists of a number of independent processing el-
ements that are connected to one another using UNIX-based pipes.
Each element receives the content from the previous pipe, performs
an operation and pushes it to the next element in the pipeline. Fig-
ure 7 shows an overview of the processing pipeline. The flow record
attributes used in this pipeline exactly correlate with the attributes
defines in the IPFIX Information Model specified in RFC 5102 [50]. A
complete description on the semantics of each element in the pipeline
can be found in [3]

3.2.1 Splitter

The splitter takes the flow-records data as input in the flow-tools
compatible format. It is responsible to duplicate the input data out to
several branches without any processing whatsoever. This allows each
of the branches to have an identical copy of the flow data to process it
independently.

3.2.1.1 Splitter Implementation

The splitter module handles the duplication of the Record instances
to separate branches. Instead of duplicating each flow-record to every

[February 12, 2012 at 10:06]

Introduction

combine them into groups
filter flow-records

apply relative filters

invoke allen interval algebra
aggregate their flow-fields

2/24

Flowy (Python) [1, 2]

Evolution

investigative, but theoretical
Flowy Improvements using Map/Reduce [3]

Flowy → F (C) [4]

read flow-records into memory
rewrite of the execution pipeline in C (not functional)
efficient rule processing with dedicated function pointers

flow-record storage using PyTables and HDF
PLY for parsing and validating the flowquery

deep copy of flow-records
deep nested loops

reduced grouper complexity using qsort and bsearchen
gi

ne
pa

rs
er

3/24

flow query hardcoded in pipeline structs

Engine Concerns

numerous grouper segfaults
no group filter
commented out merger (segfaults when uncommented)
no ungrouper

pipeline stages

functions assume specific uintX_t offsets

minor issues
code dependent on GNU99 extensions
some headers missing include guards
unused extraneous source files and headers

4/24

v0.1
it works!

Preliminary Improvements

reverse-engineered parser to generate UML [2]

$ pip install -r requirements.txt

painless single step parser installation [1]

$ pyreverse -o png -p parser parser/

*depends on pylint and graphVIZ

reverse-engineered engine to generate UML [3]

*depends on graphVIZ

[2] http://goo.gl/HTpxN

[3] http://goo.gl/SXjbv

[1] http://goo.gl/yTCTZ$ doxygen Doxyfile

6/24

http://goo.gl/yTCTZ
http://goo.gl/yTCTZ
http://goo.gl/SXjbv
http://goo.gl/SXjbv
http://goo.gl/HTpxN
http://goo.gl/HTpxN

Preliminary Improvements

$ bin/flowy-engine $PARAMS --verbose=$LEVEL

multiple verbosity levels in the engine.

--verbose=1: results of each stage
--verbose=2: intermediate results of each stage
--verbose=3: original flow-record trace

command line parsing using getopt_long(...)
prints usage on insufficient arguments
tracks invalid options
tracks invalid verbosity levels

misc
conditional compilation macros for each stage
consistency checks before reading flow-records in memory

7/24

Grouper

Grouper Internals
grouper g1 {
srcIP = srcIP
dstIP = dstIP

}

 SrcIPaddress

 209.132.180.131
 209.132.180.131
 131.155.140.135
 128.30.52.37
 128.30.52.95
 195.37.77.138
 195.37.77.138
 195.37.77.138
 195.37.77.138
 93.184.220.20
 93.184.220.20
 93.184.220.20

 SrcIPaddress

 209.132.180.131
 209.132.180.131
 131.155.140.135
 128.30.52.37
 128.30.52.95
 195.37.77.138
 195.37.77.138
 195.37.77.138
 195.37.77.138
 93.184.220.20
 93.184.220.20
 93.184.220.20

näive approach

smart approach

O(n2)

O(n) using a HT

grouper operators

equalTO
nequalTO
lThan
gThan
lThanequalTO
gThanequalTO

𐄂
𐄂

8/24

Grouper Internals
grouper g1 {
srcIP = srcIP
dstIP = dstIP

}

 SrcIPaddress

 209.132.180.131
 209.132.180.131
 131.155.140.135
 128.30.52.37
 128.30.52.95
 195.37.77.138
 195.37.77.138
 195.37.77.138
 195.37.77.138
 93.184.220.20
 93.184.220.20
 93.184.220.20

 SrcIPaddress

 209.132.180.131
 209.132.180.131
 131.155.140.135
 128.30.52.37
 128.30.52.95
 195.37.77.138
 195.37.77.138
 195.37.77.138
 195.37.77.138
 93.184.220.20
 93.184.220.20
 93.184.220.20

 SrcIPaddress

 93.184.220.20
 128.30.52.37
 128.30.52.95
 131.155.140.135
 195.37.77.138
 209.132.180.131

grouper operators

equalTO
nequalTO
lThan
gThan
lThanequalTO
gThanequalTO

unique recordset

remove duplicates : O(n)
sort : O(n*lg(n))

for each item
do binary search

: O(n*lg(k))

preprocessing

9/24

Grouper Features

 No. of Groups: 32 (Aggregations)

 ... SrcIPaddress ... DstIPaddress OR(Fl) Sum(Octets)

 ... 4.23.48.126 ... 192.168.0.135 3 81034
 ... 8.12.214.126 ... 192.168.0.135 2 5065
 ... 80.157.170.88 ... 192.168.0.135 6 18025

aggregations as separate (cooked) v5 record.

ignores aggregations on fields touched by filter/grouper
returns a SET for aggregation on uncommon fields

 No. of Groups: 1 (Aggregations)

 ... Sum(Octets)

 ... 2356654

club records into 1 group if no grouper rules defined

10/24

Merger

get_module_output_stream(module m) {
 (branch_1, branch_2, ..., branch_n) = get_input_branches(m);
 for each g_1 in group_records(branch_1)
 for each g_2 in group_records(branch_2)
 ...
 ...
 for each g_n in group_records(branch_n)
 if match(g_1, g_2, ..., g_n, rules(m))
 output.add(g_1, g_2,..., g_n);
 return output;
}

Merger Internals
merger pseudocode:

nesting level NOT
known until RUNTIME

/* initialize the iterator */
struct permut_iter *iter = iter_init(binfo_set, num_branches);

/* iterate over all permutations */
while(iter_next(iter)) {...}

/* free the iterator */
iter_destroy(iter);

iterate over all the possible permutations of the group tuples

input: (b1, b2, b3) = (3, 2, 2)
output: 12 group tuples, that are checked for a match

11/24

Removing Assumptions

- { 0, trace_data->offsets.srcaddr, aggr_static_uint32_t },
- { 0, trace_data->offsets.dPkts, aggr_sum_uint32_t },
+ { 0, trace_data->offsets.srcaddr, RULE_STATIC | RULE_S1_32, NULL },
+ { 0, trace_data->offsets.dPkts, RULE_SUM | RULE_S1_32, NULL },

flexible stages (no uintX_t assumptions)

switch (op) {
 ...
 case RULE_SUM | RULE_S1_32:
 X.func = X_uint32_t;
 break;
 ...

performance recap

grouper
grouper aggregations
group filter
merger

grouper (average)
grouper aggr (worst)
group filter (worst)
merger (worst)
ungrouper (worst)

filter (worst)
O(n*lg(n)) + O(n) + O(n*lg(k))
O(n)
O(n)
O(nm) where m = num(branches)
O(n)

O(n)

12/24

Summary

resolved numerous segfaults in grouper and merger
group aggregations as a separate (cooked) v5 record
flexible group aggregations with no uintX_t assumptions

single step installation of the python parser using pip
reverse engineered parser to generate UML.

doxygen documentation of the engine
replaced GNU99 extensions dependent code with c99

first ever group filter implementationv0
.1

cleaner src/ directory structure layout
multiple verbosity levels in the engine
first-ever merger implementation
flexible filters and group filters with no uintX_t assumptions
first-ever ungrouper implementation

13/24

v0.2
it is robust!

Complete Engine Refactor

15/24

struct flowquery {
 size_t num_branches;
 struct branch** branchset;

 size_t num_merger_rules;
 struct merger_rule** merger_ruleset;

 struct merger_result* merger_result;
 struct ungrouper_result* ungrouper_result;
};

each stage returns X_result
all rules are clubbed in X_ruleset

struct branch {

 /* ---*/
 /* inputs */
 /* ---*/

 …

 size_t num_filter_rules;
 size_t num_grouper_rules;
 size_t num_aggr_rules;
 size_t num_gfilter_rules;

 struct filter_rule** filter_ruleset;
 struct grouper_rule** grouper_ruleset;
 struct aggr_rule** aggr_ruleset;
 struct gfilter_rule** gfilter_ruleset;

 /* ---*/

 /* ---*/
 /* output */
 /* ---*/

 struct filter_result* filter_result;
 struct grouper_result* grouper_result;
 struct groupfilter_result* gfilter_result;

 /* ---*/

};

Complete Engine Refactor

struct filter_result {
 size_t num_filtered_records;
 char** filtered_recordset;
};

struct grouper_result {
 size_t num_unique_records;
 char** sorted_recordset;
 char** unique_recordset;

 size_t num_groups;
 struct group** groupset;
};

struct groupfilter_result {
 size_t num_filtered_groups;
 struct group** filtered_groupset;
};

struct merger_result {
 size_t num_group_tuples;
 size_t total_num_group_tuples;
 struct group*** group_tuples;
};

struct ungrouper_result {
 size_t num_streams;
 struct stream** streamset;
};

rulesets are dealloc as soon as X returns

Complete Engine Profiling

$ git checkout master
$ valgrind bin/flowy-engine $TRACE $QUERY

==19164== HEAP SUMMARY:
==19164== in use at exit: 20,228 bytes in 37 blocks
==19164== total heap usage: 3,646 allocs, 3,609 frees, 1,647,767
bytes allocated
==19164==
==19164== LEAK SUMMARY:
==19164== definitely lost: 0 bytes in 0 blocks
==19164== indirectly lost: 0 bytes in 0 blocks
==19164== possibly lost: 0 bytes in 0 blocks
==19164== still reachable: 20,228 bytes in 37 blocks
==19164== suppressed: 0 bytes in 0 blocks
...

$ git checkout v0.1
$ valgrind bin/flowy-engine $TRACE $QUERY

==19000== HEAP SUMMARY:
==19000== in use at exit: 131,519 bytes in 1,182 blocks
==19000== total heap usage: 2,609 allocs, 1,427 frees, 1,631,199
bytes allocated
==19000==
==19000== LEAK SUMMARY:
==19000== definitely lost: 6,912 bytes in 472 blocks
==19000== indirectly lost: 0 bytes in 0 blocks
==19000== possibly lost: 0 bytes in 0 blocks
==19000== still reachable: 124,607 bytes in 710 blocks
==19000== suppressed: 0 bytes in 0 blocks
...

before:

after:
libsystem_c
(10 mallocs)

dyld
(81 mallocs)

17/24

Issues Closed

struct grouper_type* get_gtype(uint64_t op) {
 ...
 switch (op) {

 case RULE_S2_8:
 gtype->qsort_comp = comp_uint8_t;
 gtype->bsearch = bsearch_uint8_t;
 gtype->alloc_uniqresult = alloc_uniqresult_uint8_t;
 gtype->get_uniq_record = get_uniq_record_uint8_t;
 gtype->dealloc_uniqresult = dealloc_uniqresult_uint8_t;

 break;
 case RULE_S2_16:
 ...
 break;

 case RULE_S2_32:
 ...
 break;

 case RULE_S2_64:
 ...
 break;
 }
 return gtype;
}

flexible grouper with no
uintX_t assumptions

 struct ft_data {
+ struct record** recordset;
+ int num_records;
 };

 struct record {
+ char* record;
+ bool if_filtered;
 };

greedily dealloc non-filtered
records in O(n) before merger

assign_filter_func(struct filter_rule* const frule) {…}

assign_grouper_func(struct grouper_rule* const grule) {…}

assign_aggr_func(struct aggr_rule* const arule) {…}

assign_gfilter_func(struct gfilter_rule* const gfrule) {…}

assign_merger_func(struct merger_rule* const mrule) {…}

lazy rule->func assignments

18/24

Summary
v0

.2 aggregation on common fields hit by filter/grouper is ignored
no uintX_t assumption for field offsets anywhere.
each stage functions receive bare minimum parameters

complete engine profiling (no memory leaks)
complete engine refactor

greedy dealloc non-filtered records in O(n) before merger(...)
all filtered records make 1 group with NO grouping rule

func parameters are safe using [const] ptr and ptr to [const]
lazy rule->func assignment only when the stage is hit

19/24

v0.3
it is flexible!

Features

$ flow-cat ... | flowy-engine -

read multiple traces from stdin

pipeline stages can be skipped
each stage is smart to skip itself if NO rules are defined for it.

stages only proceed when the previous returned results

graceful exits on failure

gracefully exiting when arguments cannot be parsed
glibc backtrace(...) to print the back trace on errExit(...)

21/24

Query at Runtime

 {
 "branchset": [
 "num_branches": 2
 {
 "filter": {
 "num_rules": 2,
 "ruleset": [...]
 },
 "grouper": {
 "num_rules": 2,
 "ruleset": [...]
 }
 "aggregation": {
 "num_rules": 4,
 "ruleset": [...]
 },
 "groupfilter": {
 "num_rules": 1,
 "ruleset": [...]
 },
 },
 {
 ...
 }
],
 "merger": {
 "num_rules": 2,
 "ruleset": [...]
 },
 }

number of rules in each stage
number of branches

branchset as a JSON array
rulesets as a JSON array

engine now reads the JSON query at runtime

JSON query is generated using
python script build-query.py
class FilterRule: ...
class GrouperRule: ...
class AggregationRule: ...
class GroupFilterRule: ...
class MergerRule: ...

branchset = []
branchset.append({'filter': filter,
 'grouper': grouper,
 'aggregation': aggregation,
 'groupfilter': groupfilter,
 })

query = {'num_branches': len(branchset),
 'branchset': branchset,
 'merger': merger}

Summary

each ruleset of the stage now comes from JSON
number of branches and rules now come from JSON

build-query.py to generate a JSON query
flow-cat ... | flowy-engine $QUERY -

v0
.3

gracefully exiting when trace cannot be read
gracefully exiting when JSON query cannot be parsed
each stage proceeds only when previous returned results

glibc backtrace(...) to print the back trace on errExit(...)

pipeline stages can now be skipped (need to test)

23/24

Conclusions

Future Work
ta

sk
s

benchmark against Flowy and flow-tools/nfdump
validate the engine robustness with different queries.

cross-check code compilation on GNU/Linux

enable allen interval operations on group metadata.
CMake build process

remove duplicate records after ungrouping
enable multiple modules in grouper and merger

enable SET operations on group filter
enable OR in filter rules

go
al

s IPFIX support

make parser spit the JSON query using build-query.py

hash tables for EQ/NE operations in grouper/merger

multithreaded merger
binary search trees for grouper/merger

package as a distribution and make it available via PyPI
sphinx and doxygen documentation for parser and engine

make parser spit the JSON query using build-query.py

multithreaded merger
binary search trees for grouper/merger

package as a distribution and make it available via PyPI
sphinx and doxygen documentation for parser and engine

hash tables for EQ/NE operations in grouper/merger

Resources
Thesis Blog

Thesis Source

http://mthesis.vaibhavbajpai.com

https://github.com/vbajpai/mthesis-src/

Thesis Proposal
http://www.vaibhavbajpai.com/documents/vbajpai-proposal.pdf

Issue Tracker
https://github.com/vbajpai/mthesis-src/issues

http://mthesis.vaibhavbajpai.com
http://mthesis.vaibhavbajpai.com
http://mthesis.vaibhavbajpai.com
http://mthesis.vaibhavbajpai.com
http://mthesis.vaibhavbajpai.com
http://mthesis.vaibhavbajpai.com
http://mthesis.vaibhavbajpai.com
http://mthesis.vaibhavbajpai.com

(1) V. Marinov, “Design of an IP Flow Record Query Language,”
Master’s thesis, Jacobs University Bremen, Campus Ring 1, 28759
Bremen, Germany, August 2009.

(2) K. Kanev, “Flowy - Network Flow Analysis Application,” Master’s
thesis, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany, August 2009.

(3) P. Nemeth, “Flowy Improvements using Map/Reduce,” Bachelor’s
thesis, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany, May 2010.

(4) J. Schauer, “Flowy 2.0: Fast Execution of Stream based IP Flow
Queries,” Bachelor’s thesis, Jacobs University Bremen, Campus Ring
1, 28759 Bremen, Germany, May 2011.

References

