
A Cross-Platform Open Source 3D Object
Reconstruction System using a Laser Line Projector

School of Engineering and Sciences
Jacobs University Bremen

Bremen, Germany

November 2012

Vaibhav Bajpai and Vladislav Perelman

IEEE GSC 2012, Passau

Overview

Motivation and Goals

Approach

Experimental Results

Future Work, Conclusion

Data Acquisition
Camera Calibration
Identification of 2D Laser Lines and Object Points
Point Cloud Generation
Point Cloud Processing and Registration

Overview

Motivation and Goals

Approach

Experimental Results

Future Work, Conclusion

Data Acquisition
Camera Calibration
Identification of 2D Laser Lines and Object Points
Point Cloud Generation
Point Cloud Processing and Registration

Motivation

Conclusion

4/29

active contact-free triangulation-based 3D object reconstruction
techniques have been known for more than a decade

time-of-flight method used in engineering industry

there is a need for a low-cost solution.

structured light method used by Microsoft Kinect
Stereophotogrammetry used in Google Maps

rely on high-precision expensive actuators to move the laser,
depend on external sensors to track the scanner

http://www.google.de/url?url=http://en.wikipedia.org/wiki/Photogrammetry%23Stereophotogrammetry&rct=j&q=stereo+photogrammetry&usg=AFQjCNGfWJdVV7MNKyyR2SKHoweh1YCI3Q&sa=X&ei=CtmYUOLuDcvRsgao34HYBg&ved=0CCIQygQwAA
http://www.google.de/url?url=http://en.wikipedia.org/wiki/Photogrammetry%23Stereophotogrammetry&rct=j&q=stereo+photogrammetry&usg=AFQjCNGfWJdVV7MNKyyR2SKHoweh1YCI3Q&sa=X&ei=CtmYUOLuDcvRsgao34HYBg&ved=0CCIQygQwAA

Motivation

Conclusion

David Laser Scanner initially started to solve this issue.

the package is no longer free, runs only on Windows

it uses self-calibration to eliminate the need of external sensors
the concept has been published as a research paper [1]

A need for a free alternative to the David Laser Scanner
5/29

Goals

Conclusion

This paper presents how we used these programming tools as basic
building blocks to bring the David Laser Scanner concept into reality.

Open-source

Cross-platform
written in standard C++
uses OpenCV and 3DTK (available on Mac, GNU/Linux, Windows)

Fork us on Github*

Free
utilized by a low-cost inexpensive hardware

* https://github.com/vbajpai/projectionlaserscanner 6/29

https://github.com/vbajpai/projectionlaserscanner
https://github.com/vbajpai/projectionlaserscanner

Overview

Motivation and Goals

Approach

Experimental Results

Future Work, Conclusion

Data Acquisition
Camera Calibration
Identification of 2D Laser Lines and Object Points
Point Cloud Generation
Point Cloud Processing and Registration

Data Acquisition

Conclusion

a hand-held laser sweeps across the object, while an
inexpensive web camera captures these multiple runs

mplayer to extract frames

$ mplayer -demuxer rawvideo \
 -rawvideo fps=5:w=1600:h=1200:yuy2 \
-vo pnm:ppm $FILE

read frames using OpenCV

IplImage *img =
cvLoadImage (

CV_LOAD_IMAGE_UNCHANGED
);

filename.c_str(),

8/29

Camera Calibration

Conclusion

to establish a mathematical relationship
between the natural units of the camera
with the physical units of the 3D world

points in
image plane points in the world

coordinate system

camera intrinsics

camera extrinsics

intrinsic calibration
extrinsic calibration

vector<CvMat*> cameraParameters =
camera->calibrate(imageList);

0 cameraMatrix

1 rotationVector (R1 and R2)

2 translationVector (T1 and T2)

9/29

Intrinsic Calibration

Conclusion

calibration object: planar chessboard pattern

int ifFound =
cvFindChessboardCorners (

&cvFindCornerCount,

img,
cvSize(WIDTH, HEIGHT),
corners,

);

use OpenCV to locate corners

rotate/translate the pattern to provide multiple views
use OpenCV to calculate intrinsic matrix

cvCalibrateCamera2 (

cameraMatrix, distCoeffs,

objectPoints, imagePoints
pointCounts, cvGetSize(img),

);
rvecs, tvecs

Extrinsic Calibration

Conclusion

patterns are masked to allow individual calculation

use OpenCV to calculate camera extrinsics

cvFindExtrinsicCameraParams2 (

cameraMatrix, distCoeffs,
objectPoints, imagePoints,

);
rvecs, tvecs

R1 | T1 R2 | T2

11/29

Identification of 2D Laser Lines

Conclusion

apply image processing methods to discern 2D
laser points and 2D object points

vector <vector <CvPoint>> pointWrapper =
scanner->findLaser(image);

0 Left Laser Points

1 Object Points

2 Right Laser Points

image difference to find the laser line
smoothen the difference image to reduce noise
color threshold the smoothed difference image to remove outliers
hough transform to calculate a laser line
identify the object points

12/29

Difference Image

Conclusion

use OpenCV to calculate difference image

cvAbsDiff (

differenceImage

src,
referenceImage,

);
return differenceImage;

-

13/29

Smoothen and Color Threshold

Conclusion

use OpenCV to smoothen the difference image

dst = cvCloneImage(src);
cvSmooth(src, dst, CV_GAUSSIAN, 5, 5, 0, 0);
return dst;

use OpenCV to color threshold the smoothed image

cvSplit(smoothedImage, srcB, srcG, srcR, NULL);

...
if (cvGetReal2D(srcR, j, i) < 50) {

/* darken every non-laser pixel */
} else {

/* color laser pixel as RED */
}

for (int i=0; i<(differenceImage->width); i++) {
for (int j=0; j<(differenceImage->height); j++) {

remove camera artifacts
reduce information content

removes all outliers

14/29

Hough Transform

Conclusion

use OpenCV to convert thresholded difference image to gray scale

cvCvtColor(src, dst, CV_RGB2GRAY);

use OpenCV to perform Canny edge detection

cvCanny(dst, cannyImage, lowThresh, highThresh, 3);

Canny edge detection expects a gray scale image.

Hough transform expects a binary image.
Non-zero points of the input image should be edge points.

15/29

Hough Transform

Conclusion

use OpenCV to perform Hough transform

CvSeq* line = cvHoughLines2(
 cannyImage, storage,

 CV_HOUGH_PROBABILISTIC, 1, CV_PI/180,
 houghThresh, houghParam1, houghParam2
);

for (int i=0; i<line->total; i++) {
CvPoint* lineEndPoints = (CvPoint*) cvGetSeqElem(line,i);
cvLine(src, lineEndPoints[0], lineEndPoints[1], CV_RGB(255, 0, 0), 5);

}
return src;

Discern Laser and Object Points

Conclusion

Pack pixels and return

cvSplit(src, srcB, srcG, srcR, NULL);
for(int i=0; i<finalImage->width; i++){

for(int j=0; j<finalImage->height; j++){

if(cvGetReal2D(srcB, j, i) > OBJECT_THRESH){
object.push_back(cvPoint(j,i));
ifLeftLaser = false;

}

if(cvGetReal2D(srcR, j, i) > LASER_THRESH){
if(ifLeftLaser == true) leftLaser.push_back(cvPoint(j,i));
else rightLaser.push_back(cvPoint(j,i));

...
pointWrapper.push_back(leftLaser);
pointWrapper.push_back(object);
pointWrapper.push_back(rightLaser);
return pointWrapper;

17/29

Point Cloud Generation

Conclusion

use camera parameters to calculate 3D laser
and 3D object points

vector <Point3DRGB*> pointCloud =
pointCloud->generate(cameraParameters, pointWrapper);

calculate 3D laser points using camera extrinsics
transform right 3D laser points to left coordinate system
calculate laser plane equation using 3 laser points
calculate 3D object points by intersecting laser plane and light ray
append the pixel color information from the reference image

CvPoint3D32f point3D

int RED

int GREEN

int BLUE

18/29

Laser Plane Equation

Conclusion

calculate 3D laser points using
camera extrinsics

transform right 3D laser points
to left coordinate system

calculate laser plane
equation using 3 laser points

Laser Triangulation [1]

vector <double>
PointCloud::getPlaneEquation(CvMat* p1, CvMat* p2, CvMat* p3);

19/29

Laser Triangulation

Conclusion

intersect the object pixels
with the laser plane to
obtain 3D surface points of
the target object

vector <double>
PointCloud::get3DPoint(CvPoint point2D, vector<double> *plane);

Laser Triangulation [1]

20/29

Colorize the Point Cloud

Conclusion

use the information from the reference image
to add color to the target object pixels.

for (unsigned int i=0; i < object.size(); i++) {
 ...
 CvScalar s =
 cvGet2D(referenceImage, object[i].x, object[i].y);

 pointCloud.push_back(
 new Point3DRGB(cvPoint3D32f(x, y, z),
 s.val[0], s.val[1], s.val[2])
);

}

return pointCloud;

21/29

Registration

Conclusion

apply ICP [2] to register two points clouds from
different scans into a common coordinate system.

requires initial starting guess of relative poses
the system lacks an odometer, we set initial pose to O
use 6D SLAM from 3DTK [3] for fast ICP match and visualization.

22/29

Overview

Motivation and Goals

Approach

Experimental Results

Future Work, Conclusion

Data Acquisition
Camera Calibration
Identification of 2D Laser Lines and Object Points
Point Cloud Generation
Point Cloud Processing and Registration

Experimental Results

Conclusion

discernible amount of noise is evident

need to put the quality/price of hardware under consideration

fast swipe of the laser creates gaps in the point cloud

24/29

Experimental Results

Conclusion

scan registration using ICP did not yield good results

rotation angle between two scans maybe was too large.

SLAM ICP could not converge the results.

25/29

Overview

Motivation and Goals

Approach

Experimental Results

Future Work, Conclusion

Data Acquisition
Camera Calibration
Identification of 2D Laser Lines and Object Points
Point Cloud Generation
Point Cloud Processing and Registration

Future Work

Conclusion

real-time process of data acquisition, point-cloud
generation and scan registration

help adjust the speed of laser sweep

performance evaluation with a larger dataset

one-to-one comparison with the David Laser Scanner

get immediate feedback

help ascertain the required frequency of swipes

27/29

Conclusion

Conclusion

3D object reconstruction using a laser line
projector and a web camera

cross-platform

alternative to David Laser Scanner

point clouds obtained are registered using SLAM
from 3DTK [3] and viewed using its fast viewer

free

open-source

28/29

References
(1) Low-Cost Laser Range Scanner and Fast Surface Registration Approach

DAGM 2006, Berlin, Heidelberg.
 Winkelbach, S., Molkenstruck, S,. Wahl, F.M.

(2) A Method for Registration of 3D Shapes.

IEEE Transactions on Pattern Analysis and Machine Intelligence 1992
Besl, P., McKay, H.

(3) Automation Group (Jacobs University Bremen) and Knowledge-based

http://slam6d.sourceforge.net/
3DTK - The 3D Toolkit.
Systems Group (University of Osnabrück)

http://slam6d.sourceforge.net
http://slam6d.sourceforge.net

